For Problems 1–3, apply properties of similar figures.

1. Devon says that triangles TUV and XYZ are similar because $\frac{TU}{XY} = \frac{UV}{YZ} = \frac{XZ}{TV}$. What is wrong with his reasoning?

2. Triangles CDE and FGH are similar. Write three proportions relating the triangles’ side lengths, and three statements about their angle measures.

3. Are all rhombuses similar? Explain your answer.

Use the diagram for Problems 4 and 5.

4. In the diagram of the tandem bike, $\overline{AE} \parallel \overline{BD}$. Explain why $\triangle CBD \sim \triangle CAE$.

5. Find CE to the nearest tenth. Show your work.

For Problems 6 and 7, show that the figures are similar by using a ruler to find the center of dilation. Name the center point.

6. (___, ___)

7. (___, ___)
4. smaller
5. 80; 20; 2
6. transformations; similar

Reading Strategies
1. Sequence of transformations: reflection and dilation
2. Single dilation

Success for English Learners
1. A reduction
2. \(X \) is the image of \(Q \), so \(X \) should lie at \((2 \times 2.5, 4 \times 2.5)\), or \((5, 10)\).

LESSON 11-3

Practice and Problem Solving: A/B
1. He has switched the side lengths of the triangles in the last ratio of the proportion.
2. Possible answers:
 \[
 \frac{CD}{FG} = \frac{DE}{GH}; \quad \frac{CD}{FG} = \frac{CE}{GH}; \quad \frac{DE}{GH} = \frac{CE}{FH}; \\
 m\angle C = m\angle F; \quad m\angle D = m\angle G; \quad m\angle E = m\angle H
 \]
3. No. The side lengths of all rhombuses are proportional, but the angles can vary.
4. \(\angle CBD \cong \angle CAE \) by Corresponding Angles Theorem. \(\angle C \cong \angle C \) by the Reflexive Property. So \(\triangle CBD \cong \triangle CAE \) by AA.
5. \(\frac{6}{14} = \frac{20}{CE} \); \(CE = (20 \times 14) \div 6 \approx 46.7 \text{ in.} \)
6. \((6, -4)\)

Practice and Problem Solving: C
1. \[
 \frac{CD}{FG} = \frac{DE}{GH}; \quad \frac{CD}{FG} = \frac{CE}{GH}; \quad \frac{DE}{GH} = \frac{CE}{FH}; \\
 m\angle C = m\angle F; \quad m\angle D = m\angle G; \quad m\angle E = m\angle H
 \]
2. Possible answer: \[
 \frac{CD}{FG} = \frac{DE}{GH} \quad \text{and} \quad \frac{w}{z} = \frac{x}{y}; \quad \frac{w}{z} = \frac{x}{y}.
 \]
3. 9
4. No. \(\frac{WX}{XY} \neq \frac{XZ}{YZ} \)
5. \(ADB; BDC \)
6. \(\triangle ABC \) and \(\triangle ADB \): \(\frac{2}{1} \)
 \[
 \triangle ABC \quad \text{and} \quad \triangle BDC: \frac{2\sqrt{3}}{3}
 \]
 \[
 \triangle BDC \quad \text{and} \quad \triangle ADB: \frac{\sqrt{3}}{1}
 \]
7. \(6 + 2\sqrt{3} \)
8. \(3 + \sqrt{3}; 3 + 3\sqrt{3} \)