Name \qquad
\qquad

Reteaching with Practice

For use with pages 769-775

GOAL Use trigonometric relationships to evaluate trigonometric functions of acute angles

Vocabulary

Right Triangle Definition of Trigonometric Functions

Let θ be an acute angle of a right triangle. The six trigonometric functions of θ are defined as follows.

$$
\begin{array}{lll}
\sin \theta=\frac{\text { opp }}{\text { hyp }} & \cos \theta=\frac{\text { adj }}{\text { hyp }} & \tan \theta=\frac{\text { opp }}{\text { adj }} \\
\csc \theta=\frac{\text { hyp }}{\text { opp }} & \sec \theta=\frac{\text { hyp }}{\text { adj }} & \cot \theta=\frac{\text { adj }}{\text { opp }}
\end{array}
$$

The abbreviations opp, adj, and hyp represent the lengths of the three sides of the right triangle. Note that the ratios in the second row are the reciprocals of the ratios in the first row. That is:

$$
\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}
$$

The table below gives values of the six trigonometric functions for the common angles $30^{\circ}, 45^{\circ}$, and 60°.

$\boldsymbol{\theta}$	$\sin \boldsymbol{\theta}$	$\cos \boldsymbol{\theta}$	$\tan \boldsymbol{\theta}$	$\csc \boldsymbol{\theta}$	$\sec \boldsymbol{\theta}$	$\cot \boldsymbol{\theta}$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$

Finding all missing side lengths and angle measures is called solving a right triangle.

EXAMPLE 1 Evaluating Trigonometric Functions

Evaluate the six trigonometric functions of the angle θ shown in the right triangle.

Solution

The sides opposite and adjacent to the angle θ are given.
To find the length of the hypotenuse, use the Pythagorean Theorem.

$$
\sqrt{5^{2}+12^{2}}=\sqrt{25+144}=\sqrt{169}=13
$$

\qquad

Reteaching with Practice
 For use with pages 769-775

Using adj $=12$, opp $=5$, and hyp $=13$, you can evaluate the trigonometric functions.

$$
\begin{array}{lll}
\sin \theta=\frac{\text { opp }}{\text { hyp }}=\frac{5}{13} & \cos \theta=\frac{\text { adj }}{\text { hyp }}=\frac{12}{13} & \tan \theta=\frac{\text { opp }}{\text { adj }}=\frac{5}{12} \\
\csc \theta=\frac{\text { hyp }}{\text { opp }}=\frac{13}{5} & \sec \theta=\frac{\text { hyp }}{\text { adj }}=\frac{13}{12} & \cot \theta=\frac{\text { adj }}{\text { opp }}=\frac{12}{5}
\end{array}
$$

Exercises for Example 1

Evaluate the six trigonometric functions of the given angle $\boldsymbol{\theta}$.
1.

2.

3.

example 2 Finding a Missing Side Length of a Right Triangle

Find the value of x for the right triangle shown.

Solution

Because you are given the hypotenuse and the side adjacent to $\theta=45^{\circ}$, write the equation of the trigonometric
 function involving the ratio of these sides, then solve the equation for x.

$$
\begin{aligned}
\cos 45^{\circ} & =\frac{\text { adj }}{\text { hyp }} & & \text { Write trigonometric equation. } \\
\frac{1}{\sqrt{2}} & =\frac{x}{5 \sqrt{2}} & & \text { Substitute } \frac{1}{\sqrt{2}} \text { for } \cos 45^{\circ} \text { and } 5 \sqrt{2} \text { for hypotenuse. } \\
5 & =x & & \text { Multiply each side by } 5 \sqrt{2} .
\end{aligned}
$$

The length of the side is $x=5$.

Exercises for Example 2

Find the missing side lengths x and y.
4.

5.

6.

