\qquad

12.1 Triangle Proportionality Theorem

Essential Question: When a line parallel to one side of a triangle intersects the other two sides, how does it divide those sides?

Explore Constructing Similar Triangles

In the following activity you will see one way to construct a triangle similar to a given triangle.
(A) Do your work for Steps A-C in the space provided. Draw a triangle.

Label it $A B C$ as shown.

(B) Select a point on $\overline{A B}$. Label it E.

(C) Construct an angle with vertex E that is congruent to $\angle B$. Label the point where the side of the angle you constructed intersects $\overline{A C}$ as F.

(D) Why are $\overleftrightarrow{E F}$ and $\overline{B C}$ parallel?
\qquad
\qquad
(E) Use a ruler to measure $\overline{A E}, \overline{E B}, \overline{A F}$, and $\overline{F C}$. Then compare the ratios $\frac{A E}{E B}$ and $\frac{A F}{F C}$.

Reflect

1. Discussion How can you show that $\triangle A E F \sim \triangle A B C$? Explain.
\qquad
\qquad
\qquad
\qquad
2. What do you know about the ratios $\frac{A E}{A B}$ and $\frac{A F}{A C}$? Explain.
\qquad
\qquad
3. Make a Conjecture Use your answer to Step E to make a conjecture about the line segments produced when a line parallel to one side of a triangle intersects the other two sides.
\qquad
\qquad

Explain 1 Proving the Triangle Proportionality Theorem

As you saw in the Explore, when a line parallel to one side of a triangle intersects the other two sides of the triangle, the lengths of the segments are proportional.

Triangle Proportionality Theorem		
Theorem	Hypothesis	Conclusion
If a line parallel to a side of a triangle intersects the other two sides, then it divides those sides proportionally.		$\frac{A E}{E B}=\frac{A F}{F C}$

Example 1 Prove the Triangle Proportionality Theorem

(A) Given: $\overleftrightarrow{E F} \| \overline{B C}$

Prove: $\frac{A E}{E B}=\frac{A F}{F C}$
Step 1 Show that $\triangle A E F \sim \triangle A B C$.
Because $\overleftrightarrow{E F} \| \overline{B C}$, you can conclude that $\angle 1 \cong \angle 2$ and

$\angle 3 \cong \angle 4$ by the \qquad Theorem.

So, $\triangle A E F \sim \triangle A B C$ by the \qquad -.

Step 2 Use the fact that corresponding sides of similar triangles are proportional to prove that $\frac{A E}{E B}=\frac{A F}{F C}$.

$\frac{A B}{A E}$	$=$	Corresponding sides are proportional.
$\frac{A E+E B}{A E}$	$=$	
$1+\frac{E B}{A B}$	$=$	Segment Addition Postulate
$\frac{E B}{A E}$	$=$	Use the property that $\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$.
$\frac{A E}{E B}$		Subtract 1 from both sides.

Reflect

4. Explain how you conclude that $\triangle A E F \sim \triangle A B C$ without using $\angle 3$ and $\angle 4$.

Explain 2 Applying the Triangle Proportionality Theorem

Example 2 Find the length of each segment.
(A) $\overline{C Y}$

It is given that $\overline{X Y} \| \overline{B C}$ so $\frac{A X}{X B}=\frac{A Y}{Y C}$ by the Triangle Proportionality Theorem.

Substitute 9 for $A X, 4$ for $X B$, and 10 for $A Y$.
Then solve for $C Y$.

$$
\frac{9}{4}=\frac{10}{C Y}
$$

Take the reciprocal of both sides.

$$
\frac{4}{9}=\frac{C Y}{10}
$$

Next, multiply both sides by 10 .
$10\left(\frac{4}{9}\right)=\left(\frac{C Y}{10}\right) 10 \quad \rightarrow \quad \frac{40}{9}=C Y$, or $4 \frac{4}{9}=C Y$
(B) Find $P N$.

It is given that $\overline{P Q} \| \overline{L M}$, so $\frac{N Q}{Q M}=$ \qquad by the

Triangle Proportionality Theorem.
Substitute \qquad for $N Q$, \qquad for $Q M$, and 3 for \qquad

$\frac{5}{2}=\frac{N P}{3}$
Multiply both sides by \qquad $: \square\left(\frac{5}{2}\right)=\square\left(\frac{N P}{3}\right) \rightarrow$ \qquad $=N P$

Find the length of each segment.
5. $\overline{D G}$

6. $\overline{R N}$

Explain 3 Proving the Converse of the Triangle Proportionality Theorem

The converse of the Triangle Proportionality Theorem is also true.

Converse of the Triangle Proportionality Theorem			
Theorem	Hypothesis	Conclusion	
If a line divides two sides of a triangle proportionally, then it is parallel to the third side.		$\overleftrightarrow{E F} \\| \overline{B C}$	

Example 3 Prove the Converse of the Triangle Proportionality Theorem
(A) Given: $\frac{A E}{E B}=\frac{A F}{F C}$

Prove: $\overleftrightarrow{E F} \| \overrightarrow{B C}$
Step 1 Show that $\triangle A E F \sim \triangle A B C$.
It is given that $\frac{A E}{E B}=\frac{A F}{F C}$, and taking the reciprocal

of both sides shows that \qquad Now add 1 to
both sides by adding $\frac{A E}{A E}$ to the left side and $\frac{A F}{A F}$ to the right side.
This gives
Adding and using the Segment Addition Postulate gives \qquad .

Since $\angle A \cong \angle A, \triangle A E F \sim \triangle A B C$ by the \qquad Criterion.

Step 2 Use corresponding angles of similar triangles to show that $\overleftrightarrow{E F} \| \overrightarrow{B C}$.
$\angle A E F \cong \angle \quad$ and are corresponding angles.
So, $\overleftrightarrow{E F} \| \overline{B C}$ by the \qquad Theorem.

Reflect

7. Critique Reasoning A student states that $\overline{U V}$ must be parallel to $\overline{S T}$. Do you agree? Why or why not?

Explain 4 Applying the Converse of the Triangle Proportionality Theorem

You can use the Converse of the Triangle Proportionality Theorem to verify that a line is parallel to a side of a triangle.

Example 4 Verify that the line segments are parallel.
(A) $\overline{M N}$ and $\overline{K L}$
$\frac{J M}{M K}=\frac{42}{21}=2 \quad \frac{J N}{N L}=\frac{30}{15}=2$
Since $\frac{J M}{M K}=\frac{J N}{N L}, \overline{M N} \| \overline{K L}$ by the Converse of the

Triangle Proportionality Theorem.
(B) $\overline{D E}$ and $\overline{A B}$ (Given that $A C=36 \mathrm{~cm}$, and $B C=27 \mathrm{~cm}$)
$A D=A C-D C=36-20=16$
$B E=B C-\square=\square-\square=\square$

$\frac{C D}{D A}=\frac{\square}{\square}=\frac{\square}{\square} \quad \frac{C E}{E B}=\frac{\square}{\square}=\square$
Since $\frac{C D}{D A}=-, \overline{D E} \| \overline{A B}$ by the \qquad Theorem.

Reflect

8. Communicate Mathematical Ideas In $\triangle A B C$, in the example, what is the value of $\frac{A B}{D E}$? Explain how you know.

Your Turn

9. Verify that $\overline{T U}$ and $\overline{R S}$ are parallel.

Elaborate

10. In $\triangle A B C, \overline{X Y}| | \overline{B C}$. Use what you know about similarity and proportionality to identify as many different proportions as possible.

11. Discussion What theorems, properties, or strategies are common to the proof of the Triangle Proportionality Theorem and the proof of Converse of the Triangle Proportionality Theorem?
\qquad
\qquad
\qquad
12. Essential Question Check-In Suppose a line parallel to side $\overline{B C}$ of $\triangle A B C$ intersects sides $\overline{A B}$ and $\overline{A C}$ at points X and Y, respectively, and $\frac{A X}{X B}=1$. What do you know about X and Y ? Explain.
\qquad
\qquad
\qquad

Evaluate: Homework and Practice

1. Copy the triangle $A B C$ that you drew for the Explore activity. Construct a line $\overleftrightarrow{F G}$ parallel to $\overline{A B}$ using the same method you used in the Explore activity.
2. $\overline{Z Y} \| \overleftrightarrow{M N}$. Write a paragraph proof to show that $\frac{X M}{M Z}=\frac{X N}{N Y}$.

Find the length of each segment.
3. $\overline{K L}$

4. $\overline{X Z}$

5. $\overline{V M}$

Verify that the given segments are parallel.
6. $\overline{A B}$ and $\overline{C D}$

7. $\overline{M N}$ and $\overline{Q R}$

8. $\overline{W X}$ and $\overline{D E}$

9. Use the Converse of the Triangle Proportionality Theorem to identify parallel lines in the figure.

10. On the map, 1st Street and 2nd Street are parallel. What is the distance from City Hall to 2nd Street along Cedar Road?

11. On the map, 5th Avenue, 6th Avenue, and 7th Avenue are parallel. What is the length of Main Street between 5th Avenue and 6th Avenue?

12. Multi-Step The storage unit has horizontal siding that is parallel to the base.
a. Find $L M$.
b. Find $G M$.
c. Find $M N$ to the nearest tenth of a foot.
d. Make a Conjecture Write the ratios $\frac{L M}{M N}$ and $\frac{H J}{J K}$ as decimals to the nearest hundredth and compare them. Make a conjecture about the relationship between parallel lines $\overleftrightarrow{L D}, \overleftrightarrow{M E}$, and $\overleftrightarrow{N F}$ and transversals $\overleftrightarrow{G N}$ and $\overleftrightarrow{G K}$.
13. A corollary to the Converse of the Triangle Proportionality Theorem states that if three or more parallel lines intersect two transversals, then they divide the transversals proportionally. Complete the proof of the corollary.
Given: Parallel lines $\overleftrightarrow{A B}\|\overleftrightarrow{C D}, \overleftrightarrow{C D}\| \overleftrightarrow{E F}$
Prove: $\frac{A C}{C E}=\frac{B X}{X E}, \frac{B X}{X E}=\frac{B D}{D F}, \frac{A C}{C E}=\frac{B D}{D F}$

Statements	Reasons		
1. $\overleftrightarrow{A B}\\|\overleftrightarrow{C D}, \overleftrightarrow{C D}\\| \overleftrightarrow{A F}$	1. Given		
2. Draw $\overleftrightarrow{E B}$ intersecting $\overleftrightarrow{C D}$ at X	2. Two points		
3. $\frac{A C}{C E}=\frac{B X}{X E}$	3.		
4. $\frac{B X}{X E}=\frac{B D}{D F}$	4.		
5. $\frac{A C}{C E}=\frac{B D}{D F}$	5. \quad Property of Equality		

14. Suppose that $L M=24$. Use the Triangle Proportionality Theorem to find $P M$.

15. Which of the given measures allow you to conclude that $\overline{U V} \| \overline{S T}$? Select all that apply.
A. $S R=12, T R=9$
B. $S R=16, T R=20$
C. $S R=35, T R=28$
D. $S R=50, T R=48$
E. $S R=25, T R=20$

H.O.T. Focus on Higher Order Thinking

16. Algebra For what value of x is $\overline{G F} \| \overline{H J}$?

17. Communicate Mathematical Ideas John used $\triangle A B C$ to write a proof of the Centroid Theorem. He began by drawing medians $\overline{A K}$ and $\overline{C L}$, intersecting at Z. Next he drew midsegments $\overline{L M}$ and $\overline{N P}$, both parallel to median $\overline{A K}$.
Given: $\triangle A B C$ with medians $\overline{A K}$ and $\overline{C L}$, and midsegments $\overline{L M}$ and $\overline{N P}$
Prove: Z is located $\frac{2}{3}$ of the distance from each vertex of $\triangle A B C$ to the midpoint of the opposite side.
a. Complete each statement to justify the first part of John's proof.

By the definition of \qquad $M K=\frac{1}{2} B K$. By the definition

$$
\text { of } \longrightarrow, B K=K C . \text { So, by } \longrightarrow, M K=\frac{1}{2} K C, \text { or } \frac{K C}{M K}=2 \text {. }
$$

Consider $\triangle L M C . \overline{L M} \| \overline{A K}$ (and therefore $\overline{L M} \| \overline{Z K}$), so $\frac{Z C}{L Z}=\frac{K C}{M K}$ by the Theorem, and $Z C=2 L Z$. Because
$L C=3 L Z, \frac{Z C}{L C}=\frac{2 L Z}{3 L Z}=\frac{2}{3}$, and Z is located $\frac{2}{3}$ of the distance from vertex C of $\triangle A B C$ to the midpoint of the opposite side.
b. Explain how John can complete his proof.
18. Persevere in Problem Solving Given $\triangle A B C$ with $F C=5$, you want to find $B F$. First, find the value that y must have for the Triangle Proportionality Theorem to apply. Then describe more than one way to find $B F$, and find $B F$.

Lesson Performance Task

Shown here is a triangular striped sail, together with some of its dimensions. In the diagram, segments $B J, C I$, and $D H$ are all parallel to segment $E G$. Find each of the following:

1. $A J$
2. $C D$
3. $H G$
4. $G F$
5. the perimeter of $\triangle A E F$
6. the area of $\triangle A E F$
7. the number of sails you could make for $\$ 10,000$ if the sail
 material costs $\$ 30$ per square yard
