\qquad

9.3 Properties of Rectangles, Rhombuses, and Squares

Essential Question: What are the properties of rectangles, rhombuses, and squares?

Explore Exploring Sides, Angles, and Diagonals of a Rectangle

A rectangle is a quadrilateral with four right angles.
The figure shows rectangle $A B C D$.
Investigate properties of rectangles.

(A) Use a tile or pattern block and the following method to draw three different rectangles on a separate sheet of paper.

(B) Use a ruler to measure the sides and diagonals of each rectangle. Keep track of the measurements and compare your results to other students.

Reflect

1. Why does this method produce a rectangle? What must you assume about the tile?
2. Discussion Is every rectangle also a parallelogram? Make a conjecture based upon your measurements and explain your thinking.
3. Use your measurements to make two conjectures about the diagonals of a rectangle.

Conjecture: \qquad
Conjecture: \qquad

Explain 1 Proving Diagonals of a Rectangle are Congruent

You can use the definition of a rectangle to prove the following theorems.

Properties of Rectangles

If a quadrilateral is a rectangle, then it is a parallelogram.
If a parallelogram is a rectangle, then its diagonals are congruent.

Example 1 Use a rectangle to prove the Properties of Rectangles Theorems.

Given: $A B C D$ is a rectangle.
Prove: $A B C D$ is a parallelogram; $\overline{A C} \cong \overline{B D}$.

(A) | Statements | Reasons |
| :--- | :--- |
| 1. $A B C D$ is a rectangle. | 1. Given |
| 2. $\angle A$ and $\angle C$ are right angles. | 2. Definition of |
| 3. $\angle A \cong \angle C$ | 3. All right angles are congruent. |
| 4. $\angle B$ and $\angle D$ are right angles. | 4. |
| 5. $\angle B \cong \angle D$ | 5. |
| 6. $A B C D$ is a parallelogram. | 6. |
| 7. $\overline{A D} \cong \overline{C B}$ | 7. If a quadrilateral is a parallelogram, then its opposite sides are |
| 8. $\overline{D C} \cong \overline{D C}$ | 8. |
| 9. $\angle D$ and $\angle C$ are right angles. | 9. Definition of rectangle |
| $10 . \angle D \cong \angle C$ | 10. All right angles are congruent. |
| 11. | 11. |
| 12. | 12. |

Reflect

4. Discussion A student says you can also prove the diagonals are congruent in Example 1 by using the SSS Triangle Congruence Theorem to show that $\triangle A D C \cong \triangle B C D$. Do you agree? Explain.
\qquad
\qquad

Your Turn

Find each measure.
5. $A D=7.5 \mathrm{~cm}$ and $D C=10 \mathrm{~cm}$. Find $D B$.

6. $A B=17 \mathrm{~cm}$ and $B C=12.75 \mathrm{~cm}$. Find $D B$.

Explain 2 Proving Diagonals of a Rhombus are Perpendicular

A rhombus is a quadrilateral with four congruent sides.
The figure shows rhombus JKLM.

Properties of Rhombuses

If a quadrilateral is a rhombus, then it is a parallelogram.
If a parallelogram is a rhombus, then its diagonals are perpendicular. If a parallelogram is a rhombus, then each diagonal bisects a pair of opposite angles.

Example 2 Prove that the diagonals of a rhombus are perpendicular.

Given: JKLM is a rhombus.
Prove: $\overline{J L} \perp \overline{M K}$

Since $J K L M$ is a rhombus, $\overline{J M} \cong$. Because $J K L M$ is also a parallelogram, $\overline{M N} \cong \overline{K N}$ because
By the Reflexive Property of Congruence, $\overline{J N} \cong \overline{J N}$,
so $\triangle J N M \cong \triangle J N K$ by the \qquad So, \qquad by СРСТС.
By the Linear Pair Theorem, $\angle J N M$ and $\angle J N K$ are supplementary. This means that $\mathrm{m} \angle J N M+\mathrm{m} \angle J N K=\square$.
Since the angles are congruent, $\mathrm{m} \angle J N M=\mathrm{m} \angle J N K$ so by \qquad $\mathrm{m} \angle J N M+\mathrm{m} \angle J N K=180^{\circ}$ or
$2 \mathrm{~m} \angle J N K=180^{\circ}$. Therefore, $\mathrm{m} \angle J N K=$ \square and \square $\perp \overline{M K}$.

Reflect

7. What can you say about the image of J in the proof after a reflection across $\overline{M K}$? Why?
8. What property about the diagonals of a rhombus is the same as a property of all parallelograms? What special property do the diagonals of a rhombus have?

Your Turn

9. Prove that if a parallelogram is a rhombus, then each diagonal bisects a pair of opposite angles.

Given: JKLM is a rhombus.
Prove: $\overline{M K}$ bisects $\angle J M L$ and $\angle J K L$;

$\overline{J L}$ bisects $\angle M J K$ and $\angle M L K$.

Explain 3 Using Properties of Rhombuses to Find Measures

Example 3 Use rhombus $V W X Y$ to find each measure.

(A) Find $X Y$.

All sides of a rhombus are congruent, so $\overline{V W} \cong \overline{W X}$ and $V W=W X$.
Substitute values for $V W$ and $W X$.

$$
6 m-12=4 m+4
$$

Solve for m.

$$
m=8
$$

Sustitute the value of m to find $V W$.

$$
V W=6(8)-12=36
$$

Because all sides of the rhombus are congruent, then $\overline{V W} \cong \overline{X Y}$, and $X Y=36$.
(B) Find $\angle Y V W$.

The diagonals of a rhombus are \qquad , so $\angle W Z X$ is a right angle and
$\mathrm{m} \angle W Z X=\square$.
Since $\mathrm{m} \angle W Z X=\left(3 n^{2}-0.75\right)^{\circ}$, then \qquad
Solve for n.

$$
\begin{aligned}
3 n^{2}-0.75 & =90 \\
n & =\square
\end{aligned}
$$

Substitute the value of n to find $\mathrm{m} \angle W V Z$.

$$
\mathrm{m} \angle W V Z=\square
$$

Since $\overline{V X}$ bisects $\angle Y V W$, then \qquad
Substitute 53.5° for $\mathrm{m} \angle W V Z$.

$$
\mathrm{m} \angle Y V W=2\left(53.5^{\circ}\right)=107^{\circ}
$$

Your Turn

Use the rhombus $V W X Y$ from Example 3 to find each measure.
10. Find $\mathrm{m} \angle V Y X$.
11. Find $\mathrm{m} \angle X Y Z$.

Explain 4 Investigating the Properties of a Square

A square is a quadrilateral with four sides congruent and four right angles.

Example 4 Explain why each conditional statement is true.

(A) If a quadrilateral is a square, then it is a parallelogram.

By definition, a square is a quadrilateral with four congruent sides.
Any quadrilateral with both pairs of opposite sides congruent is a parallelogram, so a square is a parallelogram.
(B) If a quadrilateral is a square, then it is a rectangle.

By definition, a square is a quadrilateral with four \qquad -.

By definition, a rectangle is also a quadrilateral with four Therefore, a square is a rectangle.

Your Turn

12. Explain why this conditional statement is true: If a quadrilateral is a square, then it is a rhombus.
13. Look at Part A. Use a different way to explain why this conditional statement is true: If a quadrilateral is a square, then it is a parallelogram.

Elaborate

14. Discussion The Venn diagram shows how quadrilaterals, parallelograms, rectangles, rhombuses, and squares are related to each other. From this lesson, what do you notice about the definitions and theorems regarding these figures?

\qquad
\qquad
15. Essential Question Check-In What are the properties of rectangles and rhombuses? How does a square relate to rectangles and rhombuses?
\qquad
\qquad
\qquad
16. Complete the paragraph proof of the Properties of Rectangles Theorems.

- Online Homework
- Hints and Help

Given: $A B C D$ is a rectangle.
Prove: $A B C D$ is a parallelogram; $\overline{A C} \cong \overline{B D}$.

- Extra Practice

Proof that the diagonals are congruent: Since $A B C D$ is a parallelogram, $\overline{A D} \cong \overline{B C}$ because \qquad
Also, \qquad by the Reflexive Property of Congruence. By the definition of a rectangle, $\angle D$ and $\angle C$ are right angles, and so \qquad
because all right angles are \qquad Therefore, $\triangle A D C \cong \triangle B C D$ by the \longrightarrow and $\square \cong \square$ by СРСТС.

Find the lengths using rectangle $A B C D$.

2. $A B=21 ; A D=28$. What is the value of $A C+B D$?
3. $B C=40 ; C D=30$. What is the value of $B D-A C$?

4. An artist connects stained glass pieces with lead strips. In this rectangular window, the strips are cut so that $F H=34 \mathrm{in}$. Find $J G$. Explain.

The rectangular gate has diagonal braces. Find each length.

5. Find $H J$.
6. Find $H K$.
7. Find the measure of each numbered angle in the rectangle.

8. Complete the two-column proof that the diagonals of a rhombus are perpendicular.
Given: JKLM is a rhombus.

Prove: $\overline{J L} \perp \overline{M K}$

Statements	Reasons
1. $\overline{J M} \cong \overline{J K}$	1. Definition of rhombus
2. $\overline{M N} \cong \overline{K N}$	2.
3. $\overline{J N} \cong \overline{J N}$	3. Reflexive Property of Congruence
4.	4. SSS Triangle Congruence Theorem
5. $\angle J N M \cong \angle J N K$	5.
6. $\angle J N M$ and $\angle J N K$ are supplementary.	6.
7.	7. Definition of supplementary
8. $\angle J N M=\angle J N K$	8. Definition of congruence
9. $\square \angle J N K=180^{\circ}$	9. Substitution Property of Equality
10. $2 \mathrm{~m} \angle J N K=180^{\circ}$	10. Addition
11. $\mathrm{m} \angle J N K=90^{\circ}$	11. Division Property of Equality
12.	12. Definition of perpendicular lines

$A B C D$ is a rhombus. Find each measure.

9. Find $A B$.

10. Find $\mathrm{m} \angle A B C$.

Find the measure of each numbered angle in the rhombus.
11.

12.

13. Select the word that best describes when each of the following statements are true. Select the correct answer for each lettered part.
A. A rectangle is a parallelogram.alwayssometimes
never
B. A parallelogram is a rhombus.

alwayssometimes never
C. A square is a rhombus.alwayssometimes \bigcirc never
D. A rhombus is a square.always \bigcirc sometimes \bigcirc never
E. A rhombus is a rectangle.alwayssometimes \bigcirc never
14. Use properties of special parallelograms to complete the proof. Given: $E F G H$ is a rectangle. J is the midpoint of $\overline{E H}$.
Prove: $\triangle F J G$ is isosceles.

Statements	Reasons
1. $E F G H$ is a rectangle. J is the midpoint of $\overline{E H}$.	1. Given
2. $\angle E$ and $\angle H$ are right angles.	2. Definition of rectangle
3. $\angle E \cong \angle H$	3.
4. $E F G H$ is a parallelogram.	4.
5.	5.
6.	6.
7.	7.
8.	8.
9.	9.

15. Explain the Error Find and explain the error in this paragraph proof. Then describe a way to correct the proof.
Given: JKLM is a rhombus.

Prove: JKLM is a parallelogram.
Proof: It is given that JLKM is a rhombus. So, by the definition of a rhombus,
$\overline{J K} \cong \overline{L M}$, and $\overline{K L} \cong \overline{M J}$. If a quadrilateral is a parallelogram, then its opposite sides are congruent. So JKLM is a parallelogram.

The opening of a soccer goal is shaped like a rectangle.
16. Draw a rectangle to represent a soccer goal. Label the rectangle $A B C D$ to show that the distance between the goalposts, $\overline{B C}$, is three times the distance from the top of the goalpost to the ground. If the perimeter of $A B C D$ is 64 feet, what is the length of $\overline{B C}$?

17. In your rectangle from Evaluate 16 , suppose the distance from B to D is $(y+10)$ feet, and the distance from A to C is $(2 y-5.3)$ feet. What is the approximate length of $\overline{A C}$?
18. $P Q R S$ is a rhombus, with $P Q=(7 b-5)$ meters and $Q R=(2 b-0.5)$ meters. If S is the midpoint of $\overline{R T}$, what is the length of $\overline{R T}$?

19. Communicate Mathematical Ideas List the properties that a square "inherits" because it is each of the following quadrilaterals.
a. a parallelogram
b. a rectangle
c. a rhombus

H.O.T. Focus on Higher Order Thinking

Justify Reasoning For the given figure, describe any rotations or reflections that would carry the figure onto itself. Explain.
20. A rhombus that is not a square
21. A rectangle that is not a square
22. A square
23. Analyze Relationships Look at your answers for Exercises 20-22. How does your answer to Exercise 22 relate to your answers to Exercises 20 and 21? Explain.

Lesson Performance Task

The portion of the Arkansas state flag that is not red is a rhombus. On one flag, the diagonals of the rhombus measure 24 inches and 36 inches. Find the area of the rhombus. Justify your reasoning.

