4.2 Transversals and Parallel Lines

Essential Question: How can you prove and use theorems about angles formed by transversals that intersect parallel lines?

Ø Explore

Name

Exploring Parallel Lines and Transversals

A **transversal** is a line that intersects two coplanar lines at two different points. In the figure, line *t* is a transversal. The table summarizes the names of angle pairs formed by a transversal.

Angle Pair	Example
Corresponding angles lie on the same side of the transversal and on the same sides of the intersected lines.	∠1 and ∠5
Same-side interior angles lie on the same side of the transversal and between the intersected lines.	$\angle 3$ and $\angle 6$
Alternate interior angles are nonadjacent angles that lie on opposite sides of the transversal between the intersected lines.	$\angle 3$ and $\angle 5$
Alternate exterior angles lie on opposite sides of the transversal and outside the intersected lines.	∠1 and ∠7

Recall that parallel lines lie in the same plane and never intersect. In the figure, line ℓ is parallel to line *m*, written $\ell || m$. The arrows on the lines also indicate that they are parallel.

 $\ell \parallel m$

© Houghton Mifflin Harcourt Publishing Company • Image Credits: ©Ruud Morijn Photographer/Shutterstock When parallel lines are cut by a transversal, the angle pairs formed are either congruent or supplementary. The following postulate is the starting point for proving theorems about parallel lines that are intersected by a transversal.

Same-Side Interior Angles Postulate

If two parallel lines are cut by a transversal, then the pairs of same-side interior angles are supplementary.

Follow the steps to illustrate the postulate and use it to find angle measures.

Draw two parallel lines and a transversal, and number the angles formed from 1 to 8.

Identify the pairs of same-side interior angles.

(C) What does the postulate tell you about these same-side interior angle pairs?

D If $m \angle 4 = 70^\circ$, what is $m \angle 5$? Explain.

Reflect

- **1.** Explain how you can find $m \angle 3$ in the diagram if $p \parallel q$ and $m \angle 6 = 61^{\circ}$.
- 2. What If? If $m \parallel n$, how many pairs of same-side interior angles are shown in the figure? What are the pairs?

 $\frac{1/3}{2/4} \frac{5/7}{6/8} t$

Explain 1 Proving that Alternate Interior Angles are Congruent

Other pairs of angles formed by parallel lines cut by a transversal are alternate interior angles.

Alternate Interior Angles Theorem

If two parallel lines are cut by a transversal, then the pairs of alternate interior angles have the same measure.

To prove something to be true, you use definitions, properties, postulates, and theorems that you already know.

Example 1 Prove the Alternate Interior Angles Theorem.

Given: $p \parallel q$

Prove: $m \angle 3 = m \angle 5$

Complete the proof by writing the missing reasons. Choose from the following reasons. You may use a reason more than once.

- Same-Side Interior Angles Postulate
- Subtraction Property of Equality

• Given

- Substitution Property of Equality
- Definition of supplementary angles
- Linear Pair Theorem

Statements	Reasons
1. <i>p</i> <i>q</i>	
2. \angle 3 and \angle 6 are supplementary.	
$3. m \angle 3 + m \angle 6 = 180^{\circ}$	
4. \angle 5 and \angle 6 are a linear pair.	
5. \angle 5 and \angle 6 are supplementary.	
6. $m \angle 5 + m \angle 6 = 180^{\circ}$	
7. m∠3 + m∠6 = m∠5 + m∠6	
8. m∠3 = m∠5	

Reflect

3. In the figure, explain why $\angle 1$, $\angle 3$, $\angle 5$, and $\angle 7$ all have the same measure.

Explain 2 Proving that Corresponding Angles are Congruent

Two parallel lines cut by a transversal also form angle pairs called corresponding angles.

Corresponding Angles Theorem

If two parallel lines are cut by a transversal, then the pairs of corresponding angles have the same measure.

Example 2 Complete a proof in paragraph form for the Corresponding Angles Theorem.

Given: p || q

Prove: $m \angle 4 = m \angle 8$

By the given statement, $p \parallel q$. $\angle 4$ and $\angle 6$ form a pair of _____.

So, using the Alternate Interior Angles Theorem, _____.

 $\angle 6$ and $\angle 8$ form a pair of vertical angles. So, using the Vertical Angles Theorem,

_____. Using the ______

in $m \angle 4 = m \angle 6$, substitute ______ for $m \angle 6$. The result is ______

Reflect

- **5.** Use the diagram in Example 2 to explain how you can prove the Corresponding Angles Theorem using the Same-Side Interior Angles Postulate and a linear pair of angles.
- **6.** Suppose $m \angle 4 = 36^{\circ}$. Find $m \angle 5$. Explain.

Explain 3 Using Parallel Lines to Find Angle Pair Relationships

You can apply the theorems and postulates about parallel lines cut by a transversal to solve problems.

Example 3 Find each value. Explain how to find the values using postulates, theorems, and algebraic reasoning.

A In the diagram, roads *a* and *b* are parallel. Explain how to find the measure of $\angle VTU$.

It is given that $m \angle PRQ = (x + 40)^{\circ}$ and $m \angle VTU = (2x - 22)^{\circ}$. $m \angle PRQ = m \angle RTS$ by the Corresponding Angles Theorem and $m \angle RTS = m \angle VTU$ by the Vertical Angles Theorem. So, $m \angle PRQ = m \angle VTU$, and x + 40 = 2x - 22. Solving for x, x + 62 = 2x, and x = 62. Substitute the value of x to find $m \angle VTU$: $m \angle VTU = (2(62) - 22)^{\circ} = 102^{\circ}$.

(x + 40)

B	in the diagram, roads a and b are parallel. Explain how to find the
	neasure of m $\angle WUV$.

It is given that $m \angle PRS = (9x)^{\circ}$ and $m \angle WUV = (22x + 25)^{\circ}$.

 $m \angle PRS = m \angle RUW$ by the _____

∠*RUW* and ______ are supplementary angles.

So, $m \angle RUW + m \angle WUV =$ _____. Solving for *x*, 31x + 25 = 180,

and ______. Substitute the value of *x* to find ______;

 $m \angle WUV = (22(5) + 25)^{\circ}$

Your Turn

7. In the diagram of a gate, the horizontal bars are parallel and the vertical bars are parallel. Find *x* and *y*. Name the postulates and/or theorems that you used to find the values.

© Houghton Mifflin Harcourt Publishing Company

💬 Elaborate

- **8.** How is the Same-Side Interior Angles Postulate different from the two theorems in the lesson (Alternate Interior Angles Theorem and Corresponding Angles Theorem)?
- **9. Discussion** Look at the figure below. If you know that *p* and *q* are parallel, and are given one angle measure, can you find all the other angle measures? Explain.

10. Essential Question Check-In Why is it important to establish the Same-Side Interior Angles Postulate before proving the other theorems?

Evaluate: Homework and Practice

In the figure below, m||n. Match the angle pairs with the correct label for the pairs. Indicate a match by writing the letter for the angle pairs on the line in front of the corresponding labels.

т 3 6

- Personal Math Trainer
 - Online Homework
 Hints and Help
 Extra Practice

A. ∠4 and ∠6 _____ Corresponding Angles
B. ∠5 and ∠8 _____ Same-Side Interior Angles
C. ∠2 and ∠6 _____ Alternate Interior Angles
D. ∠4 and ∠5 _____ Vertical Angles

Module 4

2. Complete the definition: A ______ is a line that intersects two coplanar lines at two different points.

Use the figure to find angle measures. In the figure, $p \parallel q$.

- **3.** Suppose $m \angle 4 = 82^{\circ}$. Find $m \angle 5$.
- **4.** Suppose $m \angle 3 = 105^{\circ}$. Find $m \angle 6$.

- **5.** Suppose $m \angle 3 = 122^{\circ}$. Find $m \angle 5$.
- **6.** Suppose $m \angle 4 = 76^{\circ}$. Find $m \angle 6$.

- 7. Suppose $m \angle 5 = 109^\circ$. Find $m \angle 1$.
- **8.** Suppose $m \angle 6 = 74^{\circ}$. Find $m \angle 2$.

Use the figure to find angle measures. In the figure, $m \parallel n$ and $x \parallel y$.

 $\frac{-}{4/3} p$ $\frac{5}{6} \xrightarrow{6} q$

- **9.** Suppose $m \angle 5 = 69^\circ$. Find $m \angle 10$.
- **10.** Suppose $m \angle 9 = 115^\circ$. Find $m \angle 6$.

- **11.** Suppose $m \angle 12 = 118^\circ$. Find $m \angle 7$.
- **12.** Suppose $m \angle 4 = 72^{\circ}$. Find $m \angle 11$.
- **13.** Suppose $m \angle 4 = 114^\circ$. Find $m \angle 14$. **14.** Suppo
- **14.** Suppose $m \angle 5 = 86^{\circ}$. Find $m \angle 12$.

15. Ocean waves move in parallel lines toward the shore. The figure shows the path that a windsurfer takes across several waves. For this exercise, think of the windsurfer's wake as a line. If $m \angle 1 = (2x + 2y)^\circ$ and $m \angle 2 = (2x + y)^\circ$, find x and y. Explain your reasoning.

In the diagram of movie theater seats, the incline of the floor, f, is parallel to the seats, s.

16. If $m \angle 1 = 60^{\circ}$, what is *x*?

17. If $m \angle 1 = 68^\circ$, what is *y*?

18.	Complete a proof in paragraph form for the Alternate Interior Angles Theorem. $\frac{1/2}{4/2}$
	Given: $p \parallel q$
	Prove: $m\angle 3 = m\angle 5$
	It is given that $p \parallel q$, so using the Same-Side Interior Angles Postulate, $\angle 3$ and $\angle 6$
	are So, the sum of their measures is and $m\angle 3 + m\angle 6 = 180^{\circ}$.
	You can see from the diagram that $\angle 5$ and $\angle 6$ form a line, so they are a,
	which makes them Then $m\angle 5 + m\angle 6 = 180^{\circ}$. Using the
	Substitution Property of Equality, you can substitute in $m\angle 3 + m\angle 6 = 180^{\circ}$ with
	$m\angle 5 + m\angle 6$. This results in $m\angle 3 + m\angle 6 = m\angle 5 + m\angle 6$. Using the Subtraction Property
	of Equality, you can subtract from both sides. So,

р

→q

19. Write a proof in two-column form for the Corresponding Angles Theorem.

Given: $p \parallel q$

Prove: $m \angle 1 = m \angle 5$

Statements	Reasons

20. Explain the Error Angelina wrote a proof in paragraph form to prove that the measures of corresponding angles are congruent. Identify her error, and describe how to fix the error.

Angelina's proof:

I am given that $p \parallel q$. $\angle 1$ and $\angle 4$ are supplementary angles because they form a linear pair, so $m\angle 1 + m\angle 4 = 180^\circ$. $\angle 4$ and $\angle 8$ are also supplementary because of the Same-Side Interior Angles Postulate, so $m\angle 4 + m\angle 8 = 180^\circ$. You can substitute $m\angle 4 + m\angle 8$ for 180° in the first equation above. The result is $m\angle 1 + m\angle 4 = m\angle 4 + m\angle 8$. After subtracting $m\angle 4$ from each side, I see that $\angle 1$ and $\angle 8$ are corresponding angles and $m\angle 1 = m\angle 8$.

21. Counterexample Ellen thinks that when two lines that are not parallel are cut by a transversal, the measures of the alternate interior angles are the same. Write a proof to show that she is correct or use a counterexample to show that she is incorrect.

H.O.T. Focus on Higher Order Thinking

Analyzing Mathematical Relationships Use the diagram of a staircase railing for Exercises 22 and 23. $\overline{AG} \parallel \overline{CJ}$ and $\overline{AD} \parallel \overline{FJ}$. Choose the best answer.

- **22.** Which is a true statement about the measure of $\angle DCJ$?
 - **A.** It is 30°, by the Alternate Interior Angles Theorem.
 - **B.** It is 30°, by the Corresponding Angles Theorem.
 - **C.** It is 50°, by the Alternate Interior Angles Theorem.
 - **D.** It is 50°, by the Corresponding Angles Theorem.
- **23.** Which is a true statement about the value of *n*?
 - **A.** It is 25, by the Alternate Interior Angles Theorem.
 - **B.** It is 25, by the Same-Side Interior Angles Postulate.
 - **C.** It is 35, by Alternate Interior Angles Theorem.
 - **D.** It is 35, by the Corresponding Angles Theorem.

Lesson Performance Task

Washington Street is parallel to Lincoln Street. The Apex Company's headquarters is located between the streets. From headquarters, a straight road leads to Washington Street, intersecting it at a 51° angle. Another straight road leads to Lincoln Street, intersecting it at a 37° angle.

- **a.** Find *x*. Explain your method.
- **b.** Suppose that another straight road leads from the opposite side of headquarters to Washington Street, intersecting it at a y° angle, and another straight road leads from headquarters to Lincoln Street, intersecting it at a z° angle. Find the measure of the angle *w* formed by the two roads. Explain how you found *w*.

