\qquad

15.1 Central Angles and Inscribed Angles

Essential Question: How can you determine the measures of central angles and inscribed angles of a circle?

Explore Investigating Central Angles and Inscribed Angles

A chord is a segment whose endpoints lie on a circle.
A central angle is an angle less than 180° whose vertex lies at the center of a circle.
An inscribed angle is an angle whose vertex lies on a circle and whose sides contain chords of the circle.

The diagram shows two examples of an inscribed angle and the corresponding central angle.

Chords
$\overline{A B}$ and $\overline{B D}$
Central Angle
$\angle A C D$
Inscribed Angle
$\angle A B D$

(A) Use a compass to draw a circle. Label the center C.
(B) Use a straightedge to draw an acute inscribed angle on your circle from Step A. Label the angle as $\angle D E F$.
(C) Use a straightedge to draw the corresponding central angle, $\angle D C F$.
(D) Use a protractor to measure the inscribed angle and the central angle. Record the measure of the inscribed angle, the measure of the central angle, and the measure of 360° minus the central angle. List your results in the table.

Angle Measure	Circle C	Circle 2	Circle 3	Circle 4	Circle 5	Circle 6	Circle 7
$\mathrm{m} \angle D E F$							
$\mathrm{~m} \angle D C F$							
$360^{\circ}-\mathrm{m} \angle D C F$							

(E) Repeat Steps A-D six more times. Examine a variety of inscribed angles (two more acute, one right, and three obtuse). Record your results in the table in Step D.

Reflect

1. Examine the values in the first and second rows of the table. Is there a mathematical relationship that exists for some or all of the values? Make a conjecture that summarizes your observation.
\qquad
\qquad
2. Examine the values in the first and third rows of the table. Is there a mathematical relationship that exists for some or all of the values? Make a conjecture that summarizes your observation.
\qquad
\qquad
\qquad

Explain 1 Understanding Arcs and Arc Measure

An arc is a continuous portion of a circle consisting of two points (called the endpoints of the arc) and all the points on the circle between them.

Arc	Measure
A minor arc is an arc whose points are on or in the interior of a corresponding central angle.	The measure of a minor arc is equal to the measure of the central angle.
A major arc is an arc whose points are on or in the exterior of a corresponding central angle.	The measure of a major arc is equal to 360° minus the measure of the central angle. m $\overparen{A D B}=360^{\circ}-$ m $\angle A C B$
A semicircle is an arc whose endpoints are the endpoints of a diameter.	The measure of a semicircle is 180°.

Adjacent arcs are arcs of the same circle that intersect in exactly one point. $\overparen{D E}$ and $\overparen{E F}$ are adjacent arcs.

Arc Addition Postulate

The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.

$$
\mathrm{m} \overparen{A D B}=\mathrm{m} \overparen{A D}+\mathrm{m} \overparen{D B}
$$

Example 1

(A) If $\mathrm{m} \angle B C D=18^{\circ}$ and $\mathrm{m} \overparen{E F}=33^{\circ}$, determine $\mathrm{m} \overparen{A B D}$ using the appropriate theorems and postulates. $\overleftrightarrow{A F}$ and $\overleftrightarrow{B E}$ intersect at Point C.
If $\mathrm{m} \overparen{E F}=33^{\circ}$, then $\mathrm{m} \angle E C F=33^{\circ}$. If $\mathrm{m} \angle E C F=33^{\circ}$, then $\mathrm{m} \angle A C B=33^{\circ}$ by the Vertical Angles Theorem. If $\mathrm{m} \angle A C B=33^{\circ}$ and $\mathrm{m} \angle B C D=18^{\circ}$, then $\mathrm{m} \overparen{A B}=33^{\circ}$ and $\mathrm{m} \overparen{B D}=18^{\circ}$. By the Arc Addition Postulate, $\mathrm{m} \overparen{A B D}=\mathrm{m} \overparen{A B}+\mathrm{m} \overparen{B D}$, and so $\mathrm{m} \overparen{A B D}=51^{\circ}$.

(B) If $\mathrm{m} \overparen{K K}=27^{\circ}$, determine $\mathrm{m} \overparen{N P}$ using the appropriate theorems and postulates. $\overleftrightarrow{M K}$ and $\overleftrightarrow{N J}$ intersect at Point C.

If $\mathrm{m} \overparen{K}=27^{\circ}$, then $\mathrm{m} \angle J C K=27^{\circ}$. If $\mathrm{m} \angle J C K=27^{\circ}$, then $\mathrm{m} \angle \square=27^{\circ}$ by the \qquad

If $\mathrm{m} \angle M C N=27^{\circ}$ and $\mathrm{m} \angle M C P=\square^{\circ}$, then $\mathrm{m} \overparen{M N}=27^{\circ}$ and $\mathrm{m} \widehat{M N P}=\square^{\circ}$. By the \qquad , $\mathrm{m} \overparen{M N P}=\mathrm{m} \overparen{M N}+\mathrm{m} \overparen{N P}$, and so $\mathrm{m} \overparen{N P}=\mathrm{m} \square-\mathrm{m} \overparen{M N}=\square^{\circ}$

Reflect

3. The minute hand of a clock sweeps out an arc as time moves forward. From 3:10 p.m. to 3:30 p.m., what is the measure of this arc? Explain your reasoning.

Your Turn

4. If $\mathrm{m} \overparen{E F}=45^{\circ}$ and $\mathrm{m} \angle A C D=56^{\circ}$, determine $\mathrm{m} \overparen{B D}$ using the appropriate theorems and postulates. $\overleftrightarrow{A E}, \overleftrightarrow{B F}$, and $\overleftrightarrow{D C}$ intersect at Point C.

\qquad
\qquad
\qquad

Explain 2 Using the Inscribed Angle Theorem

In the Explore you looked at the relationship between central angles and inscribed angles. Those results, combined with the definitions of arc measure, lead to the following theorem about inscribed angles and their intercepted arcs. An intercepted arc consists of endpoints that lie on the sides of an inscribed angle and all the points of the circle between them.

Inscribed Angle Theorem

The measure of an inscribed angle is equal to half the measure of its intercepted arc.
$\mathrm{m} \angle A D B=\frac{1}{2} \mathrm{~m} \overparen{A B}$

Example 2 Use the Inscribed Angle Theorem to find inscribed angle measures.

(A) Determine $\mathrm{m} \overparen{D E}, \mathrm{~m} \overparen{B D}, \mathrm{~m} \angle D A B$, and $\mathrm{m} \angle A D E$ using the appropriate theorems and postulates.

By the Inscribed Angle Theorem, $\mathrm{m} \angle D A E=\frac{1}{2} \mathrm{~m} \overparen{D E}$, and so
$\mathrm{m} \overparen{D E}=2 \times 54^{\circ}=108^{\circ}$. By the Arc Addition Postulate,
$\mathrm{m} \overparen{B D}=\mathrm{m} \overparen{B E}+\mathrm{m} \overparen{E D}=18^{\circ}+108^{\circ}=126^{\circ}$. By the Inscribed Angle
Theorem, $\mathrm{m} \angle D A B=\frac{1}{2} \mathrm{~m} \overparen{B D}=\frac{1}{2} \times 126^{\circ}=63^{\circ}$. Note that $\widehat{A B E}$ is a
 semicircle, and so $m \widehat{A B E}=180^{\circ}$. By the Inscribed Angle Theorem, $\mathrm{m} \angle A D E=\frac{1}{2} \mathrm{~m} \overparen{A B E}=\frac{1}{2} \times 180^{\circ}=90^{\circ}$.
(B) Determine $\mathrm{m} \overparen{W X}, \mathrm{~m} \overparen{X Z}, \mathrm{~m} \angle X W Z$, and $\mathrm{m} \angle W X Z$ using the appropriate theorems and postulates.

By the Inscribed Angle Theorem, $\mathrm{m} \angle W Z X=\square \mathrm{m} \overparen{W X}$, and so $\mathrm{m} \overparen{W X}=2 \times 9^{\circ}=\square$. Note that $\widehat{W X Z}$ is a \qquad and,

therefore, $\mathrm{m} \widehat{W X Z}=180^{\circ}$. By the \qquad ,
$\mathrm{m} \widehat{W X Z}=\mathrm{m} \overparen{W X}+\mathrm{m} \overparen{X Z}$ and then $\mathrm{m} \overparen{X Z}=180^{\circ}-18^{\circ}=\square$
By the \qquad , $\mathrm{m} \angle X W Z=\frac{1}{2} \mathrm{~m} \overparen{X Z}=\frac{1}{2} \times 162^{\circ}=81^{\circ}$.

Note that \square is a semicircle, and so $m \widehat{W Y Z}=\square$. By the Inscribed
Angle Theorem, $\mathrm{m} \angle W X Z=\frac{1}{2} \mathrm{~m} \square=\frac{1}{2} \times \square=\square$.

Reflect

5. Dlscussion Explain an alternative method for determining $\mathrm{m} \angle \overparen{X Z}$ in Example 2B.
6. Justify Reasoning How does the measure of $\angle A B D$ compare to the measure of $\angle A C D$? Explain your reasoning.
\qquad
\qquad
\qquad

7. If $\mathrm{m} \angle E D F=15^{\circ}$, determine $\mathrm{m} \angle A B E$ using the appropriate theorems and postulates.

Explain 3 Investigating Inscribed Angles on Diameters

You can examine angles that are inscribed in a semicircle. Example 3 Construct and analyze an angle inscribed in a semicircle.
(A) Use a compass to draw a circle with center C. Use a straightedge to draw a diameter of the circle. Label the diameter $\overline{D F}$.
(B) Use a straightedge to draw an inscribed angle $\angle D E F$ on your circle from Step A whose sides contain the endpoints of the diameter.
(C) Use a protractor to determine the measure of $\angle D E F$ (to the nearest degree).

Record the results in the table.

Angle Measure	Circle C	Circle 2	Circle 3	Circle 4
$\mathrm{m} \angle D E F$				

(D) Repeat the process three more times. Make sure to vary the size of the circle, and the location of the vertex of the inscribed angle. Record the results in the table in Part C.
(E) Examine the results, and make a conjecture about the measure of an angle inscribed in a semicircle.
\qquad
(F) How can does the Inscribed Angle Theorem justify your conjecture?
\qquad
\qquad
\qquad

Inscribed Angle of a Diameter Theorem

The endpoints of a diameter lie on an inscribed angle if and only if the inscribed angle is a right angle.

Reflect

8. A right angle is inscribed in a circle. If the endpoints of its intercepted arc are connected by a segment, must the segment pass through the center of the circle?
\qquad
\qquad

Elaborate

9. An equilateral triangle is inscribed in a circle. How does the relationship between the measures of the inscribed angles and intercepted arcs help determine the measure of each angle of the triangle?

10. Essential Question Check-In What is the relationship between inscribed angles and central angles in a circle?
\qquad
\qquad
\qquad

Evaluate: Homework and Practice

Identify the chord(s), inscribed angle(s), and central angle(s) in the figure. The center of the circles in Exercises 1, 2, and 4 is C.

- Online Homework - Hints and Help
- Extra Practice

1.

Chord(s): \qquad
InscribedAngle(s): \qquad
Central Angle(s): \qquad
3.

4.

Chord(s): \qquad
Inscribed Angle(s): \qquad
Central Angle(s): \qquad
Central Angle(s): \qquad
2.

Chord(s): \qquad
Inscribed Angle(s):
Central Angle(s): \qquad

Inscribed Angle(s):
\qquad
\qquad
5. $\mathrm{m} \angle D G E$
6. $\mathrm{m} \angle E F D$

The center of the circle is A. Find each measure using the appropriate theorems and postulates.
7. $\mathrm{m} \overparen{C E}$

8. $\mathrm{m} \overparen{D F}$
9. $\mathrm{m} \overparen{B E C}$

Find each measure using the appropriate theorems and postulates. $\mathrm{m} \overparen{A C}=116^{\circ}$
10. $\mathrm{m} \overparen{B C}$

11. $\mathrm{m} \overparen{A D}$

The center of the circle is C. Find each measure using the appropriate theorems and postulates. $\mathrm{m} \overparen{L M}=70^{\circ}$ and $\mathrm{m} \overparen{N P}=60^{\circ}$.
12. $\mathrm{m} \angle M N P$

13. $\mathrm{m} \angle L M N$

The center of the circle is \boldsymbol{O}. Find each arc or angle measure using the appropriate theorems and postulates.
14. $\mathrm{m} \angle B D E$
15. $\mathrm{m} \overparen{A B D}$

16. $\mathrm{m} \overparen{E D}$
17. $\mathrm{m} \angle D B E$

Represent Real-World Problems The circle graph shows how a typical household spends money on energy. Use the graph to find the measure of each arc.
18. $\mathrm{m} \overparen{P Q}$

20. Communicate Mathematical Ideas A carpenter's square is a tool that is used to draw right angles. Suppose you are building a toy car and you have four small circles of wood that will serve as the wheels. You need to drill a hole in the center of each wheel for the axle. Explain how you can use the carpenter's square to find the center of each wheel.

21. Choose the expressions that are equivalent to $\mathrm{m} \angle A O B$. Select all that apply.
A. $\frac{1}{2} \mathrm{~m} \angle A C B$
B. $\mathrm{m} \angle A C B$
C. $2 \mathrm{~m} \angle A C B$
D. $\mathrm{m} \overparen{A B}$
E. $\mathrm{m} \angle D O E$
F. $\mathrm{m} \angle D F E$
G. $2 \mathrm{~m} \angle D F E$
H. $\mathrm{m} \overparen{D E}$

22. Analyze Relationships Draw arrows to connect the concepts shown in the boxes. Then explain how the terms shown in the concept map are related.

23. In circle E, the measures of $\angle D E C, \angle C E B$, and $\angle B E A$ are in the ratio 3:4:5. Find $\mathrm{m} \overparen{A C}$.

H.O.T. Focus on Higher Order Thinking

24. Explain the Error The center of the circle is G. Below is a student's work to find the value of x. Explain the error and find the correct value of x.
$\overline{A D}$ is a diameter, so $\mathrm{m} \widehat{A C D}=180^{\circ}$.
Since $\mathrm{m} \overparen{A C D}=\mathrm{m} \overparen{A B}+\mathrm{m} \overparen{B C}+\mathrm{m} \overparen{C D}, \mathrm{~m} \overparen{A B}+\mathrm{m} \overparen{B C}+\mathrm{m} \overparen{C D}=180^{\circ}$.

$$
\begin{aligned}
5 x+90+15 x & =180 \\
20 x & =90 \\
x & =4.5
\end{aligned}
$$

25. Multi-Step An inscribed angle with a diameter as a side has measure x°. If the ratio of $\mathrm{m} \overparen{A D}$ to $\mathrm{m} \overparen{D B}$ is $1: 4$, what is $\mathrm{m} \overparen{D B}$?

26. Justify Reasoning To prove the Inscribed Angle Theorem you need to prove three cases. In Case 1, the center of the circle is on a side of the inscribed angle. In Case 2, the center the circle is in the interior of the inscribed angle. In Case 3, the center the circle is in the exterior of the inscribed angle.
a. Fill in the blanks in the proof for Case 1 to show that
$\mathrm{m} \angle D A B=\frac{1}{2} \mathrm{~m} \overparen{D B}$.
Given: $\angle D A B$ is inscribed in circle C.

Prove: $\mathrm{m} \angle D A B=\frac{1}{2} \mathrm{~m} \overparen{D B}$
Proof: Let $\mathrm{m} \angle A=x^{\circ}$. Draw $\overline{D C}$.
$\triangle A D C$ is \qquad So $m \angle A=m \angle$ \square by the Isosceles Triangle Theorem.
Then \square $=2 x^{\circ}$ by the Exterior Angle Theorem. So, $\mathrm{m} \overparen{D B}=$ \square by the definition of the measure of an arc of a circle.
Since $\mathrm{m} \overparen{D B}=\square$ and $\mathrm{m} \angle D A B=\square, \mathrm{m} \angle D A B=\frac{1}{2} \overparen{D B}$.
b. Draw and label a diagram for Case 2 . Then use a paragraph proof to prove that the inscribed angle is one-half the intercepted arc.
c. Draw and label a diagram for Case 3. Then use a paragraph proof to prove that the inscribed angle is one-half the intercepted arc.

Lesson Performance Task

Diana arrives late at the theater for a play. Her ticket entitles her to sit anywhere in Circle G. She had hoped to sit in Seat D, which she thought would give her the widest viewing angle of the stage. But Seat D is taken, as are all the other nearby seats in Circle G. The seating chart for the theater is shown.

Identify two other spots where Diana can sit that will give her the same viewing angle she would have had in Seat D. Explain how you know how your points would provide the same viewing angle, and support your claim by showing the viewing angles on the drawing.

