\qquad
\qquad

10.3 Graphing Cube Root Functions

Essential Question: How can you use transformations of the parent cube root function to graph functions of the form $f(x)=a \sqrt[3]{(x-h)}+k$ or $g(x)=\sqrt[3]{\frac{1}{b}(x-h)}+k$?

Explore
 Graphing and Analyzing the Parent Cube Root Function

The cube root parent function is $f(x)=\sqrt[3]{x}$. To graph $f(x)$, choose values of x and find corresponding values of y. Choose both negative and positive values of x.

Graph the function $f(x)=\sqrt[3]{x}$. Identify the domain and range of the function.
(A) Make the table of values.

x	y	x, y
-8		
-1		
0		
1		
8		

(B) Use the table to graph the function.
(C) Identify the domain and range of the function.

The domain is the \qquad .

The range is \qquad -
(D) Does the graph of $f(x)=\sqrt[3]{x}$ have any symmetry?

The graph has \qquad

Reflect

1. Can the radicand in a cube root function be negative?

Explain 1 Graphing Cube Root Functions

Transformations of the Cube Root Parent Function $f(x)=\sqrt[3]{x}$		
Transformation	$f(x)$ Notation	Examples
Vertical translation	$f(x)+k$	$\begin{array}{ll} y=\sqrt[3]{x}+3 & 3 \text { units up } \\ y=\sqrt[3]{x}-4 & 4 \text { units down } \end{array}$
Horizontal translation	$f(x-h)$	$\begin{array}{ll} y=\sqrt[3]{x-2} & 2 \text { units right } \\ y=\sqrt[3]{x+1} & 1 \text { units left } \end{array}$
Vertical stretch/compression	$a f(x)$	$\begin{array}{ll} y=6 \sqrt[3]{x} & \begin{array}{l} \text { vertical stretch by } \\ \text { a factor of } 6 \end{array} \\ y=\frac{1}{2} \sqrt[3]{x} & \begin{array}{l} \text { vertical compression by } \\ \text { a factor of } \frac{1}{2} \end{array} \end{array}$
Horizontal stretch/ compression	$f\left(\frac{1}{b} x\right)$	$\begin{array}{ll} y=\sqrt[3]{\frac{1}{5} x} & \begin{array}{l} \text { horizontal stretch by } \\ \text { a factor of } 5 \end{array} \\ y=\sqrt[3]{3 x} & \begin{array}{l} \text { horizontal compression by } \\ \text { a factor of } \frac{1}{3} \end{array} \end{array}$
Reflection	$\begin{aligned} & -f(x) \\ & f(-x) \end{aligned}$	$\begin{array}{ll} y=-\sqrt[3]{x} & \text { across } x \text {-axis } \\ y=\sqrt[3]{-x} & \text { across } y \text {-axis } \end{array}$

For the function $f(x)=a \sqrt[3]{x-h}+k,(h, k)$ is the graph's point of symmetry. Use the values of a, h, and k to draw each graph. Note that the point $(1,1)$ on the graph of the parent function becomes the point $(1+h, a+k)$ on the graph of the given function.
For the function $f(x)=\sqrt[3]{\frac{1}{b}(x-h)}+k,(h, k)$ remains the graph's point of symmetry. Note that the point $(1,1)$ on the graph of the parent function becomes the point $(b+h, 1+k)$ on the graph of the given function.

Example 1 Graph the cube root functions.

(A) Graph $g(x)=2 \sqrt[3]{x-3}+5$.

The transformations of the graph of $f(x)=\sqrt[3]{x}$ that produce the graph of $g(x)$ are:

- a vertical stretch by a factor of 2
- a translation of 3 units to the right and 5 units up

Choose points on $f(x)=\sqrt[3]{x}$ and find the transformed corresponding points on $g(x)=2 \sqrt[3]{x-3}+5$.
Graph $g(x)=2 \sqrt[3]{x-3}+5$ using the transformed points.
(See the table and graph on the next page.)

$f(x)=\sqrt[3]{\boldsymbol{x}}$	$\boldsymbol{g}(\boldsymbol{x})=\mathbf{2} \sqrt[3]{\boldsymbol{x}-\mathbf{3}}+\mathbf{5}$
$(-8,-2)$	$(-5,1)$
$(-1,-1)$	$(2,3)$
$(0,0)$	$(3,5)$
$(1,1)$	$(4,7)$
$(8,2)$	$(11,9)$

(B) Graph $g(x)=\sqrt[3]{\frac{1}{2}(x-10)}+4$.

The transformations of the graph of $f(x)=\sqrt[3]{x}$ that produce the graph of $g(x)$ are:

- a horizontal stretch by a factor of 2
- a translation of 10 units to the right and 4 units up

Choose points on $f(x)=\sqrt[3]{x}$ and find the transformed corresponding points on $g(x)=\sqrt[3]{\frac{1}{2}(x-10)}+4$. Graph $g(x)=\sqrt[3]{\frac{1}{2}(x-10)}+4$ using the transformed points.

$f(x)=\sqrt[3]{x}$	$g(x)=\sqrt[3]{\frac{1}{2}(x-10)}+4$
$(-8,-2)$	
$(-1,-1)$	
$(0,0)$	
$(1,1)$	
$(8,2)$	

Your Turn

Graph the cube root function.
2. Graph $g(x)=\sqrt[3]{x-3}+6$.

$f(x)=\sqrt[3]{x}$	$g(x)=\sqrt[3]{x-3}+6$
$(-8,-2)$	
$(-1,-1)$	
$(0,0)$	
$(1,1)$	
$(8,2)$	

Explain 2 Writing Cube Root Functions

Given the graph of the transformed function $g(x)=a \sqrt[3]{\frac{1}{b}(x-h)}+k$, you can determine the values of the parameters by using the reference points $(-1,1),(0,0)$, and $(1,1)$ that you used to graph $g(x)$ in the previous example.

Example 2 For the given graphs, write a cube root function.
(A) Write the function in the form $g(x)=a \sqrt[3]{x-h}+k$.

Identify the values of a, h, and k.
Identify the values of h and k from the point of symmetry.
$(h, k)=(1,7)$, so $h=1$ and $k=7$.
Identify the value of a from either of the other two reference points ($-1,1$) or $(1,1)$.

The reference point $(1,1)$ has general coordinates $(h+1, a+k)$. Substituting 1 for h and 7 for k and setting the general coordinates
 equal to the actual coordinates gives this result:
$(h+1, a+k)=(2, a+7)=(2,9)$, so $a=2$.
$a=2$
$h=1$
$k=7$

The function is $g(x)=2 \sqrt[3]{x-1}+7$.
(B) Write the function in the form $g(x)=\sqrt[3]{\frac{1}{b}(x-h)}+k$.

Identify the values of b, h, and k.
Identify the values of h and k from the point of symmetry.
$(h, k)=(2, \square)$ so $h=2$ and $k=\square$.
Identify the value of b from either of the other two reference points.

The rightmost reference point has general coordinates $(b+h, 1+k)$.

Your Turn

For the given graphs, write a cube root function.
3. Write the function in the form $g(x)=a \sqrt[3]{x-h}+k$.

4. Write the function in the form $g(x)=\sqrt[3]{\frac{1}{b}(x-h)}+k$.

Explain 3 Modeling with Cube Root Functions

You can use cube root functions to model real-world situations.

Example 3

(A) The shoulder height h (in centimeters) of a particular elephant is modeled by the function $h(t)=62.1 \sqrt[3]{t}+76$, where t is the age (in years) of the elephant. Graph the function and examine its average rate of change over the equal t-intervals $(0,20),(20,40)$, and $(40,60)$. What is happening to the average rate of change as the t-values of the intervals increase? Use the graph to find the height when $t=35$.

Graph $h(t)=62.1 \sqrt[3]{t}+76$.
The graph is the graph of $f(x)=\sqrt[3]{x}$ translated up 76 and stretched vertically by a factor of 62.1 . Graph the transformed points $(0,76),(8,200.2),(27,262.3)$, and ($64,324.4$). Connect the points with a smooth curve.

First interval:
Average Rate of change $\approx \frac{244.6-76}{20-0}$

$$
=8.43
$$

Second interval:
Average Rate of change $\approx \frac{288.4-244.6}{40-20}$

$$
=2.19
$$

Third interval:

Average Rate of change $\approx \frac{319.1-288.4}{60-40}$

$$
=1.54
$$

The average rate of change is becoming less.
Drawing a vertical line up from 35 gives a value of about 280 cm .
(B) The velocity of a 1400 -kilogram car at the end of a 400 -meter run is modeled by the function $v=15.2 \sqrt[3]{p}$, where v is the velocity in kilometers per hour and p is the power of its engine in horsepower. Graph the function and examine its average rate of change over the equal p-intervals $(0,60),(60,120)$, and $(120,180)$. What is happening to the average rate of change as the p-values of the intervals increase? Use the function to find the velocity when p is 100 horsepower.

Graph $v=15.2 \sqrt[3]{p}$.

The graph is the graph of $f(x)=\sqrt[3]{x}$ stretched \qquad by a factor of 15.2. Graph the transformed points $(0,0),(8, \square)$, $(27, \ldots),(64, \longrightarrow),(125, \longrightarrow)$, and ($216, \square)$.

Connect the points with a smooth curve.

The average rate of change over the interval $(0,60)$ is

The average rate of change over the interval $(60,120)$ is $\frac{-\square}{120-60}$ whichis about \qquad

The average rate of change over the interval $(120,180)$ is $\frac{-}{180-120}$ which is about \qquad
The average rate of change is becoming \qquad .

Substitute $p=100$ in the function.

The velocity is about \qquad km / h.

Your Turn

5. The fetch is the length of water over which the wind is blowing in a certain direction. The function $s(f)=7.1 \sqrt[3]{f}$, relates the speed of the wind s in kilometers per hour to the fetch f in kilometers. Graph the function and examine its average rate of change over the intervals $(20,80),(80,140)$, and $(140,200)$. What is happening to the average rate of change as the f-values of the intervals increase? Use the function to find the speed of the wind when $f=64$.

Elaborate

6. Discussion Why is the domain of $f(x)=\sqrt[3]{x}$ all real numbers?
\qquad
\qquad
\qquad
7. Identify which transformations (stretches or compressions, reflections, and translations) of $f(x)=\sqrt[3]{x}$ change the following attributes of the function.
a. Location of the point of symmetry
b. Symmetry about a point
\qquad
\qquad
\qquad
8. Essential Question Check-In How do parameters a, b, h, and k effect the graphs of $f(x)=a \sqrt[3]{(x-h)}+k$ and $g(x)=\sqrt[3]{\frac{1}{b}(x-h)}+k$?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
9. Graph the function $g(x)=\sqrt[3]{x}+3$. Identify the domain and range of the function.

10. Graph the function $g(x)=\sqrt[3]{x}-5$. Identify the

- Online Homework
- Hints and Help
- Extra Practice domain and range of the function.

Describe how the graph of the function compares to the graph of $f(x)=\sqrt[3]{x}$.
3. $g(x)=\sqrt[3]{x}+6$
5. $g(x)=\frac{1}{3} \sqrt[3]{-x}$
7. $g(x)=-2 \sqrt[3]{x}+3$
4. $g(x)=\sqrt[3]{x-5}$
6. $g(x)=\sqrt[3]{5 x}$
8. $g(x)=\sqrt[3]{x+4}-3$

Graph the cube root functions.

9. $g(x)=3 \sqrt[3]{x+4}$

10. $g(x)=2 \sqrt[3]{x}+3$

11. $g(x)=\sqrt[3]{x-3}+2$

For the given graphs, write a cube root function.
12. Write the function in the form $g(x)=a \sqrt[3]{x-h}+k$.

13. Write the function in the form $g(x)=a \sqrt[3]{x-h}+k$.

14. Write the function in the form $g(x)=\sqrt[3]{\frac{1}{b}(x-h)}+k$.

15. The length of the side of a cube is modeled by $s=\sqrt[3]{V}$. Graph the function. Use the graph to find s when $V=48$.

16. The radius of a stainless steel ball, in centimeters, can be modeled by $r(m)=0.31 \sqrt[3]{m}$, where m is the mass of the ball in grams. Use the function to find r when $m=125$.

17. Describe the steps for graphing $g(x)=\sqrt[3]{x+8}-11$.
18. Modeling Write a situation that can be modeled by a cube root function. Give the function.
19. Find the y-intercept for the function $y=a \sqrt[3]{x-h}+k$.
20. Find the x-intercept for the function $y=a \sqrt[3]{x-h}+k$.
21. Describe the translation(s) used to get $g(x)=\sqrt[3]{x-9}+12$ from $f(x)=\sqrt[3]{x}$. Select all that apply.
A. translated 9 units right
E. translated 12 units right
B. translated 9 units left
F. translated 12 units left
C. translated 9 units up
G. translated 12 units up
D. translated 9 units down
H. translated 12 units down

H.O.T. Focus on Higher Order Thinking

22. Explain the Error Tim says that to graph $g(x)=\sqrt[3]{x-6}+3$, you need to translate the graph of $f(x)=\sqrt[3]{x} 6$ units to the left and then 3 units up. What mistake did he make?
23. Communicate Mathematical Ideas Why does the square root function have a restricted domain but the cube root function does not?
24. Justify Reasoning Does a horizontal translation and a vertical translation of the function $f(x)=\sqrt[3]{x}$ affect the function's domain or range? Explain.

Lesson Performance Task

The side length of a 243 -gram copper cube is 3 centimeters. Use this information to write a model for the radius of a copper sphere as a function of its mass. Then, find the radius of a copper sphere with a mass of 50 grams. How would changing the material affect the function?

