\qquad Date \qquad
\qquad

Lesson SAS Triangle Congruence

Practice and Problem Solving: A/B

Use principles of triangle congruence to answer Problems 1 and 2.

1. If you know the leg lengths of two right triangles, can you tell whether they are congruent? Explain your answer.
\qquad
\qquad
\qquad
\qquad
For Problems 3 and 4, use the figure at the right.
2. Explain how you know that $\triangle A B D \cong \triangle C B D$.
\qquad
\qquad

3. If two triangles have three pairs of congruent parts, will they always be congruent? Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
4. Describe a sequence of two rigid motions that maps $\triangle A B D$ onto $\triangle C B D$.

Use the figure at the right for the two-column proof.

5. The Hatfields and the McCoys are feuding over some land. Neither family will be satisfied unless the two triangular fields are exactly the same size. Point C is the midpoint of each of the intersecting segments. Write a two-column proof that will settle the dispute.

Given: C is the midpoint of $\overline{A D}$ and $\overline{B E}$.
Prove: $\triangle A B C \cong \triangle D E C$

Statements	Reasons
1. C is the \qquad of \qquad and	1.
2. $A C=C D$,	2. Definition of
3. $\overline{A C} \cong \overline{C D}, \ldots \cong$	3. Definition of
4. $\angle A C B \cong \angle$	4.
5. \cong	5.

Statements	Reasons
1. $\angle I J K \cong \angle L M N$, $\angle I K J \cong \angle L N M$	1. Given
2. $J K \cong M N$	2. Definition of a rectangle
3. $\triangle I J K \cong \triangle L M N$	3. ASA

Reading Strategies

1. congruent
2. not congruent

Success for English Learners

1. No, it would not. ASA works for triangles because there are only three angles, so knowing two of them is enough because it is known that all three angles always sum to 180°. Other shapes have more angles, so more would be needed.

LESSON 5-3

Practice and Problem Solving: A/B

1. Yes. The right angle of a right triangle is the included angle of the two legs. If both pairs of legs are congruent, the triangles are congruent by SAS.
2. No. If all three angle pairs are congruent the triangles will be similar but not necessarily congruent. If two pairs of sides are congruent and two non-included or non-corresponding angles are congruent, the triangles are not necessarily congruent.
3. Possible answer: Two sides and the included angle of $\triangle A B D(\overline{A D}, \angle A D B$, $\overline{D B}$) are congruent respectively to two sides and the included angle of $\triangle C D B$ ($\overline{B C}, \angle C B D, \overline{D B}$), so the triangles are congruent by the SAS Triangle Theorem.
4. Possible answer: Rotate $\triangle A B D 180^{\circ}$ around point B. Then translate $\triangle A B D$ down and left to map onto $\triangle C D B$.
5.

Statements	Reasons
$\begin{array}{c}\text { 1. } C \text { is the midpoint } \\ \text { of } \overline{A D} \text { and } \overline{B E} .\end{array}$	1. Given
2. $A C=C D, B C=C E$	$\begin{array}{l}\text { 2. Definition of } \\ \text { midpoint }\end{array}$
3. $\overline{A C} \cong \overline{C D}$,	$\begin{array}{l}\text { 3. Definition of } \\ \text { congruent } \\ \text { segments }\end{array}$
$\overline{B C} \cong \overline{C E}$	

Angles

Theorem\end{array}\right] .\)| 4. SAS |
| :--- |
| Triangle |
| Theorem |

Practice and Problem Solving: C

1. Possible answer: It is given that $\angle D O E \cong \angle F O E . D O \cong O F$ because both segments are radii of the same circle. $E O \cong E O$. So, $\triangle D O E \cong \triangle F O E$ by the SAS Triangle Theorem and $D E \cong E F$ by CPCTC.
2. Possible answer: Since M bisects $B D$, $x+3=2 x-7$. Solving for $x, x=10$. Substituting the value of x into the expressions gives $B D=26$ and $A C=26$. Since $A D=A D$ and $\angle B D A \cong \angle C A D$, the triangles are congruent by the SAS Triangle Theorem. So, by CPCTC, $\angle B \cong \angle C$.
3. $\overline{U T} \cong \overline{U R}$ because $\overline{Q S}$ divides $\overline{R T}$ into two congruent segments, $\overline{Q U} \cong \overline{Q U}$. All the angles at the intersection of the diagonals measure 90° because the segments are perpendicular. Therefore, $\triangle Q U R \cong \triangle Q U T$ by SAS. Similarly, $\triangle R U S \cong \triangle T U S$

