ASA Triangle Congruence *Practice and Problem Solving: A/B*

Date

W

Class

Apply ASA Triangle Congruence to answer Problems 1–3.

- 1. What additional information do you need in order to conclude that $\Delta PQS \cong \Delta RQS$? Explain your reasoning.
- 2. Point X is the midpoint of \overline{VZ} . Can you conclude that ΔVWX is congruent to ΔZYX ? If so, explain your answer. If there is not enough information, explain what additional information is needed.
- Angle D of △DEF is congruent to ∠G of △GHJ. Angle E is congruent to ∠H. Side DE is congruent to side HJ. Can you prove that the two triangles are congruent? Explain your answer.

For Problems 4 and 5, use the figure to the right.

4. Complete the proof to prove that $\triangle ABC \cong \triangle CDA$.

Statements	Reasons
1. ∠ACD ≅ ∠	1.
2.	2. Given
3.	3.
4. $\triangle ABC \cong \triangle CDA$	4.

S

5. Describe a sequence of two rigid motions that maps $\triangle ABC \cong \triangle CDA$.

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

Practice and Problem Solving: A/B

- 1. $\angle PQS \cong \angle RQS$; if these angles are congruent, then the triangles will be congruent by the ASA Congruence Theorem.
- 2. There is not enough information. Angle VXW is congruent to $\angle ZXY$ because they are vertical angles. $XV \cong XZ$ because X is the midpoint of VZ. If $\angle XVW \cong \angle XZY$, then the triangles are congruent by ASA.
- 3. No, side *HJ* does not correspond to side *DE* (and is not the included side of angles *G* and *H*), so the ASA Theorem does not apply.

4.	Statements	Reasons
	1. $\angle ACD \cong \angle CAB$	1. Given
	2. ∠BCA \cong ∠DAC	2. Given
	3. $\overline{AC} \cong \overline{CA}$	3. Reflexive Property of Congruence
	4. $\triangle ABC \cong \triangle CDA$	4. ASA Triangle Congruence Theorem

5. Possible answer: Rotate $\triangle ABC$ 180° around point *A*, and then translate $\triangle ABC$ to the left.

Practice and Problem Solving: C

- 1. Possible answer: Because *MP* bisects $\angle NMQ$ and $\angle NPQ$, $\angle NMP \cong \angle QMP$ and $\angle NPM \cong \angle QPM$; also, MP = MP. So, the triangles are congruent by the ASA Congruence Theorem. Therefore, by CPCTC, MN = MQ.
- 2. Possible answer:

3. Possible answer: *LN* bisects $\angle KLM$, so $\angle KLN \cong \angle MLN$. This means that 2x - 18 = x + 6. Solving for *x* gives x = 24. Substituting the value of *x* into the expressions for the measures of $\angle KNL$ and $\angle MNL$ gives $m \angle KNL = 90^{\circ}$ and $m \angle MNL = 90^{\circ}$. Since LN = LN, the triangles are congruent by the ASA Congruence Theorem. So, by CPCTC, $\angle K \cong \angle M$.

4.	Statements	Reasons
	1. ∠QUR ≅ ∠SUV	1. All right angles are congruent
	2. ∠PQU ≅ ∠TSU	2. Given
	3. ∠RQU and ∠PQU are supplementary; ∠VSU and ∠TSU are supplementary	3. Linear Pair Theorem
	4. ∠RQU ≅ ∠VSU	 ∠PQU ≅ ∠TSU and Congruent Supplements Theorem
	5. QU ≅ SU	5. QU = SU and definition of congruence
	6. ∠ <i>RU</i> Q ≅ ∠ <i>VUS</i>	6. ASA Triangle Congruence Theorem

Practice and Problem Solving: Modified

- 1. XZ
- 2. YX
- 3. YZ
- 4. AHN
- 5. $\angle K \cong \angle A$, KB = AH, and $\angle B \cong \angle H$, so the triangles are congruent by the ASA Congruence Theorem.
- 6. Possible answer: Reflect $\triangle KBT$ across a vertical line through *T* and then translate it downward.

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.