\qquad
\qquad
\qquad
ASA Triangle Congruence Practice and Problem Solving: A/B

Apply ASA Triangle Congruence to answer Problems 1-3.

1. What additional information do you need in order to conclude that $\triangle P Q S \cong \triangle R Q S$? Explain your reasoning.
\qquad
\qquad
2. Point X is the midpoint of $\overline{V Z}$. Can you conclude that $\triangle V W X$ is congruent to $\triangle Z Y X$? If so, explain your answer. If there is not enough information, explain what additional information is needed.
\qquad
\qquad

3. Angle D of $\triangle D E F$ is congruent to $\angle G$ of $\triangle G H J$. Angle E is congruent to $\angle H$. Side $D E$ is congruent to side $H J$. Can you prove that the two triangles are congruent? Explain your answer.
\qquad
\qquad
For Problems 4 and 5, use the figure to the right.
4. Complete the proof to prove that $\triangle A B C \cong \triangle C D A$.

Statements	Reasons
1. $\angle A C D \cong \angle$	1.
2.	2. Given
3.	3.
4. $\triangle A B C \cong \triangle C D A$	4.

5. Describe a sequence of two rigid motions that maps $\triangle A B C \cong \triangle C D A$.

LESSON 5-2

Practice and Problem Solving: A/B

1. $\angle P Q S \cong \angle R Q S$; if these angles are congruent, then the triangles will be congruent by the ASA Congruence Theorem.
2. There is not enough information. Angle $V X W$ is congruent to $\angle Z X Y$ because they are vertical angles. $X V \cong X Z$ because X is the midpoint of $V Z$. If $\angle X V W \cong \angle X Z Y$, then the triangles are congruent by ASA.
3. No, side HJ does not correspond to side $D E$ (and is not the included side of angles G and H), so the ASA Theorem does not apply.
4.

Statements	Reasons
1. $\angle A C D \cong \angle C A B$	1. Given
2. $\angle B C A \cong \angle D A C$	2. Given
3. $\overline{A C} \cong \overline{C A}$	3. Reflexive Property of Congruence
4. $\triangle A B C \cong \triangle C D A$	4. ASA Triangle Congruence Theorem

5. Possible answer: Rotate $\triangle A B C 180^{\circ}$ around point A, and then translate $\triangle A B C$ to the left.

Practice and Problem Solving: C

1. Possible answer: Because MP bisects $\angle N M Q$ and $\angle N P Q, \angle N M P \cong \angle Q M P$ and $\angle N P M \cong \angle Q P M$; also, $M P=M P$. So, the triangles are congruent by the ASA Congruence Theorem. Therefore, by CPCTC, $M N=M Q$.
2. Possible answer:

3. Possible answer: $L N$ bisects $\angle K L M$, so $\angle K L N \cong \angle M L N$. This means that $2 x-18=x+6$. Solving for x gives $x=24$. Substituting the value of x into the expressions for the measures of $\angle K N L$ and $\angle M N L$ gives $\mathrm{m} \angle K N L=90^{\circ}$ and $\mathrm{m} \angle M N L=90^{\circ}$. Since $L N=L N$, the triangles are congruent by the ASA Congruence Theorem. So, by CPCTC, $\angle K \cong \angle M$.
4.

Statements	Reasons
1. $\angle Q U R \cong \angle S U V$	1. All right angles are congruent
2. $\angle P Q U \cong \angle T S U$	2. Given
3. $\angle R Q U$ and $\angle P Q U$ are supplementary; $\angle V S U$ and $\angle T S U$ are supplementary	3. Linear Pair Theorem
4. $\angle R Q U \cong \angle V S U$	4. $\angle P Q U \cong \angle T S U$ and Congruent Supplements Theorem
5. $\overline{Q U} \cong \overline{S U}$	5. QU = SU and definition of congruence
6. $\angle R U Q \cong \angle V U S$	6. ASA Triangle Congruence Theorem

Practice and Problem Solving: Modified

1. $\overline{X Z}$
2. $\overline{Y X}$
3. $\overline{Y Z}$
4. $A H N$
5. $\angle K \cong \angle A, K B=A H$, and $\angle B \cong \angle H$, so the triangles are congruent by the ASA Congruence Theorem.
6. Possible answer: Reflect $\triangle K B T$ across a vertical line through T and then translate it downward.
