Name _	Date	Class
LESSO	Properties of Parallelograms	
9-1	Practice and Problem Solving: A/B	
	is a parallelogram. Find each measure.	$P \xrightarrow{2x} Q$ $S \xrightarrow{10n^{\circ}} 8n^{\circ} R$
2. m	∠\$	$S \frac{1}{x+3} R$
3. m	∠R	
breez the to	gure shows a swing blown to one side by a e. As long as the seat of the swing is parallel p bar, the swing makes a parallelogram. In	to A
	CD, $DC = 2$ ft, $BE = 4\frac{1}{2}$ ft, and $m \angle BAD = 75^{\circ}$.	
Find e	ach measure.	
4. <i>Al</i>	B 5. <i>ED</i>	6. <i>BD</i>
7. m	∠ <i>ABC</i> 8. m∠ <i>BCD</i>	9. m∠ <i>ADC</i>
Use th	vertices of <i>GHIJ</i> are G(0, 0), H(2, 3), and J ne grid to the right to complete Problems 10– ot vertices <i>G</i> , <i>H</i> , and <i>J</i> on the coordinate plane.	
	nd the rise (difference in the <i>y</i> -coordinates) from to <i>H</i>	3
	nd the run (difference in the <i>x</i> -coordinates) from to <i>H</i>	
У-	sing your answers from Problems 11 and 12, add coordinate of vertex <i>J</i> and add the run to the <i>x</i> -co ne coordinates of vertex <i>I</i> are (,	oordinate of vertex <i>J</i> .
14. PI	ot vertex <i>I</i> . Connect the points to draw D GHIJ.	
	neck your answer by finding the slopes of \overline{IH} and ope of $\overline{IH} = _$ slope of $\overline{JG} = _$	
16. W	hat do the slopes tell you about \overline{IH} and \overline{JG} ? _	

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

UNIT 3 Quadrilaterals and Coordinate Proof

MODULE 9 Properties of Quadrilaterals

LESSON 9-1

Practice and Problem Solving: A/B

- 1.6
- 2. 100°
- 3. 80°
- 4. 2 ft
- 5. $4\frac{1}{2}$ ft
- 2
- 6. 9 ft
- 7. 105°
- 8. 75°
- 9. 105°

- 11. 3
- 12. 2
- 13. 8; 4
- 14. See graph.
- 15. $\frac{1}{6}$; $\frac{1}{6}$
- 16. If two lines have the same slope they are parallel. \overline{IH} and \overline{JG} have the same slope so they are parallel.

Practice and Problem Solving: C

- 1. m∠*C* = 135°; m∠*D* = 45°
- 2. 15 in.
- 3. 4.5 ft
- 4. 9 < ℓ < 15
- 5. $x < \ell < 3x$
- 6. $0 < \ell < 2x$

7. Possible answer: The height of ABCD is 2b and the length of the base is 2c, so the area of ABCD is 4bc. Because ABCD is a parallelogram. AB = DC and BC = AD, and $\angle A$ is congruent to $\angle C$ and $\angle B$ is congruent to $\angle D$. Furthermore, because E. F. G. and H are midpoints. AE = BE =CG = DG, and BF = CF = AH = DH. So by SAS, $\triangle AEH$ is congruent to $\triangle CGF$, and $\triangle BEF$ is congruent to $\triangle DGH$. Now find the coordinates of the midpoints: E(a, b), F(c + 2a, 2b), G(2c + a, b), H(c, 0). The height of $\triangle AEH$ is *b* and the length of the base is c, so its area is $\frac{1}{2}bc$. The areas of congruent triangles are equal, so the area of $\triangle CGF$ is also $\frac{1}{2}bc$. The height of $\triangle DGH$ is b and the length of the base is c, so its area is $\frac{1}{2}bc$. The area of $\triangle BEF$ is also $\frac{1}{2}bc$. The area of all four triangles is thus 2bc. The area of EFGH is the area of ABCD minus the area of the triangles, or 4bc - 2bc = 2bc. And the area of EFGH

is
$$2bc = \frac{1}{2}(4bc) = \frac{1}{2}(area \text{ of } ABCD).$$

8. Possible answer: Use the slope formula to find the slope of each side: slope of

 $\overline{EF} = \frac{b}{a+c}$, slope of $\overline{GH} = \frac{b}{a+c}$, slope of $\overline{FG} = \frac{b}{a-c}$, slope of $\overline{EH} = \frac{b}{a-c}$. Segments with equal slopes are parallel, so \overline{EF} is parallel to \overline{GH} , and \overline{FG} is

parallel to \overline{EH} . Therefore, EFGH is a parallelogram.

Practice and Problem Solving: Modified

- 1. supplementary
- 2. parallel or congruent
- 3. bisect
- 4. congruent

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.