\qquad Date \qquad
\qquad

Lesson Properties of Parallelograms Practice and Problem Solving: A/B

$P Q R S$ is a parallelogram. Find each measure.

1. $R S$ \qquad
2. $\mathrm{m} \angle S$ \qquad

3. $\mathrm{m} \angle R$ \qquad

The figure shows a swing blown to one side by a breeze. As long as the seat of the swing is parallel to the top bar, the swing makes a parallelogram. In $\square A B C D, D C=2 \mathrm{ft}, B E=4 \frac{1}{2} \mathrm{ft}$, and $\mathrm{m} \angle B A D=75^{\circ}$.

Find each measure.
4. $A B$ \qquad
5. $E D$ \qquad 6. $B D$ \qquad
7. $\mathrm{m} \angle A B C$ \qquad 8. $\mathrm{m} \angle B C D$ \qquad 9. $\mathrm{m} \angle A D C$ \qquad
Three vertices of $\square G H I J$ are $G(0,0), H(2,3)$, and $J(6,1)$.
Use the grid to the right to complete Problems 10-16.
10. Plot vertices G, H, and J on the coordinate plane.
11. Find the rise (difference in the y-coordinates) from G to H. \qquad
12. Find the run (difference in the x-coordinates) from
 G to H. \qquad
13. Using your answers from Problems 11 and 12, add the rise to the y-coordinate of vertex J and add the run to the x-coordinate of vertex J.

The coordinates of vertex / are (\qquad , \qquad).
14. Plot vertex I. Connect the points to draw \square GHIJ.
15. Check your answer by finding the slopes of $\overline{I H}$ and $\overline{J G}$. slope of $\overline{I H}=$ \qquad slope of $\overline{J G}=$ \qquad
16. What do the slopes tell you about $\overline{I H}$ and $\overline{J G}$? \qquad

UNIT 3 Quadrilaterals and Coordinate Proof

MODULE 9 Properties of Quadrilaterals

LESSON 9-1

Practice and Problem Solving: A/B

1. 6
2. 100°
3. 80°
4. 2 ft
5. $4 \frac{1}{2} \mathrm{ft}$
6. 9 ft
7. 105°
8. 75°
9. 105°
10.

11.3
12. 2
13. 8; 4
14. See graph.
15. $\frac{1}{6} ; \frac{1}{6}$
16. If two lines have the same slope they are parallel. $\overline{I H}$ and $\overline{J G}$ have the same slope so they are parallel.

Practice and Problem Solving: C

1. $\mathrm{m} \angle C=135^{\circ} ; \mathrm{m} \angle D=45^{\circ}$
2. 15 in .
3. 4.5 ft
4. $9<\ell<15$
5. $x<\ell<3 x$
6. $0<\ell<2 x$
7. Possible answer: The height of $A B C D$ is $2 b$ and the length of the base is $2 c$, so the area of $A B C D$ is $4 b c$. Because $A B C D$ is a parallelogram, $A B=D C$ and $B C=A D$, and $\angle A$ is congruent to $\angle C$ and $\angle B$ is congruent to $\angle D$. Furthermore, because E, F, G, and H are midpoints, $A E=B E=$ $C G=D G$, and $B F=C F=A H=D H$. So by SAS, $\triangle A E H$ is congruent to $\triangle C G F$, and $\triangle B E F$ is congruent to $\triangle D G H$. Now find the coordinates of the midpoints: $E(a, b)$, $F(c+2 a, 2 b), G(2 c+a, b), H(c, 0)$. The height of $\triangle A E H$ is b and the length of the base is c, so its area is $\frac{1}{2} b c$. The areas of congruent triangles are equal, so the area of $\triangle C G F$ is also $\frac{1}{2} b c$. The height of $\triangle D G H$ is b and the length of the base is c, so its area is $\frac{1}{2} b c$. The area of $\triangle B E F$ is also $\frac{1}{2} b c$. The area of all four triangles is thus $2 b c$. The area of $E F G H$ is the area of $A B C D$ minus the area of the triangles, or $4 b c-2 b c=2 b c$. And the area of $E F G H$ is $2 b c=\frac{1}{2}(4 b c)=\frac{1}{2}($ area of $A B C D)$.
8. Possible answer: Use the slope formula to find the slope of each side: slope of $\overline{E F}=\frac{b}{a+c}$, slope of $\overline{G H}=\frac{b}{a+c}$, slope of $\overline{F G}=\frac{b}{a-c}$, slope of $\overline{E H}=\frac{b}{a-c}$.
Segments with equal slopes are parallel, so $\overline{E F}$ is parallel to $\overline{G H}$, and $\overline{F G}$ is parallel to $\overline{E H}$. Therefore, $E F G H$ is a parallelogram.

Practice and Problem Solving: Modified

1. supplementary
2. parallel or congruent
3. bisect
4. congruent
