LES	SSON Proving Lines Are Parallel Practice and Problem Solving: A/B		
4			
Use para (<i>Hir</i> figu	e the figure for Problems 1–8. Tell wh allel from the given information. If th <i>nt:</i> The angle measures may change ure is for reference only.)	The ther lines <i>m</i> and <i>n</i> must be ey are, state your reasoning. for each problem, and the for each problem n and the n and n must be n a	
1.	$\angle 7 \cong \angle 3$	2. m∠3 = $(15x + 22)^\circ$, m∠1 = $(19x - 10)^\circ$, x = 8	
3.	$\angle 7 \cong \angle 6$	4. $m \angle 2 = (5x + 3)^\circ$, $m \angle 3 = (8x - 5)^\circ$, x = 14	
5.	m∠8 = $(6x - 1)^\circ$, m∠4 = $(5x + 3)^\circ$, x = 9	9 6. ∠5 ≅ ∠7	
7.	$\angle 1 \cong \angle 5$	8. $m \angle 6 = (x + 10)^\circ$, $m \angle 2 = (x + 15)^\circ$	

9. Look at some of the printed letters in a textbook. The small horizontal and vertical segments attached to the ends of the letters are called *serifs*. Most of the letters in a textbook are in a serif typeface. The letters on this page do not have serifs, so these letters are in a sansserif typeface. (*Sans* means "without" in French.) The figure shows a capital letter *A* with serifs. Use the given information to write a paragraph proof that the serif, segment *HI*, is parallel to segment *JK*.

Given: $\angle 1$ and $\angle 3$ are supplementary.

Prove: $\overline{HI} \parallel \overline{JK}$

4. 62°

5. a. $m \angle 2 + m \angle 3 = 180^{\circ}$

- b. Corr. $\angle s$ Thm.
- c. $m \angle 1 = m \angle 2$
- d. $m \angle 1 + m \angle 3 = 180^{\circ}$
- e. Subst.
- 6. *x* = 50; *y* = 25

Practice and Problem Solving: C

- 1. Possible answer: $m \angle 1 + m \angle 2 = 180^{\circ}$ and $m \angle 3 + m \angle 4 = 180^{\circ}$ by the Same-Side Int. \angle s Thm. Thus, the total of the angle measures is 360°.
- 2. 360°
- 3. 360°; Possible answer:

Statements	Reasons
1. Draw \overline{BE} parallel to \overline{AD} .	1. Construction
2. m∠1 + m∠ABE = 180°, m∠4 + m∠DEB = 180°	2. Same-Side Int.∠s Thm.
3. m∠1+m∠4+m∠ <i>ABE</i> + m∠ <i>DEB</i> = 360°	3. Add Prop. of =
4. m∠3 + m∠ <i>CEB</i> + m∠ <i>CBE</i> = 180°	4. Given
5. m∠ <i>DEB</i> + m∠ <i>CEB</i> = 180°	5. Lin. Pair Thm.
6. m∠3 + m∠ <i>CEB</i> + m∠ <i>CBE</i> = m∠ <i>DEB</i> + m∠ <i>CEB</i>	6. Subst. (Steps 4,5)
7. m∠3 + m∠ <i>CBE</i> = m∠ <i>DEB</i>	7. Subtr. Prop. of =
8. $m \angle 1 + m \angle 3 + m \angle 4 + m \angle ABE + m \angle CBE = 360^{\circ}$	8. Subst. (Steps 3,7)
9. m∠2 = m∠ <i>ABE</i> + m∠ <i>CBE</i>	9. Angle Add. Post.
10. $m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4 = 360^{\circ}$	10. Subst. (Steps 8, 9)

Practice and Problem Solving: Modified

- 1. 140°
- 2. 70°
- 3.75
- 4. 150
- 5. congruent
- 6. equal
- 7. parallel; transversal
- 8. supplementary
- 9. congruent
- 10. \angle 3 and \angle 5; \angle 4 and \angle 6
- 11. \angle 1 and \angle 7; \angle 2 and \angle 8
- 12. \angle 3 and \angle 6; \angle 4 and \angle 5

Reading Strategies

- 1. $\angle 1 \cong \angle 5$ 2. $\angle 2 \cong \angle 6$ 3. $\angle 3 \cong \angle 7$ 4. $\angle 4 \cong \angle 8$ 5. $\angle 2 \cong \angle 8$ 6. $\angle 3 \cong \angle 5$ 7. $\angle 1 \cong \angle 7$ 8. $\angle 4 \cong \angle 6$
- 9. $\angle 2 + \angle 5 = 180^{\circ}$
- 10. $\angle 3 + \angle 8 = 180^{\circ}$
- 11. $m \angle 6 = 47^{\circ}$ by the Corresponding Angles Postulate
- 12. $m \angle 3 = 133^{\circ}$ by the Same-Side Interior Angles Theorem

Success for English Learners

- 1. All the angle pairs will be either congruent angles or supplementary angles.
- 2. Same-side interior angles, angles that form a linear pair, and exterior angles on the same side of the transversal are supplementary angles.

LESSON 4-3

Practice and Problem Solving: A/B

- 1. $m \parallel n$; Conv. of Alt Int. \angle s Thm.
- 2. $m \parallel n$; Conv. of Corr. \angle s Thm.

- 3. *m* and *n* are parallel if and only if $m \angle 7 = 90^{\circ}$.
- 4. $m \parallel n$; Conv. of Same-Side Int. \angle s Thm.
- 5. *m* and *n* are not parallel.
- 6. $m \parallel n$; Conv. of Corr. \angle s Thm.
- 7. $m \parallel n$; Conv. of Alt Ext. \angle s Thm.
- 8. *m* and *n* are not parallel.
- Possible answer: The given information states that ∠1 and ∠3 are supplementary. ∠1 and ∠2 are also supplementary by the Linear Pair Theorem. Therefore ∠3 and ∠2 must be congruent by the Congruent Supplements Theorem. Since ∠3 and ∠2 are congruent, *HI* and *JK* are parallel by the Converse of the Corresponding Angles Theorem.

Practice and Problem Solving: C

1. x = 11; y = -5; $m \angle 1 = 57^{\circ}$; $m \angle 2 = 57^{\circ}$; $m \angle 3 = 123^{\circ}$

Possible answer: Draw \overrightarrow{AE} so it forms a 90° angle with *AB* by the Protractor Postulate. The Angle Addition Postulate states that $m \angle FAD$, $m \angle 2 = m \angle FAB$, so by substitution $m \angle FAD + m \angle 2 = 90^{\circ}$. It is given that $\angle 1 \cong \angle 2$, so $m \angle 1 = m \angle 2$ by the definition of congruent angles. Substituting again reveals that $m \angle FAD + m \angle 1 = 90^{\circ}$. $\angle FAD$, $\angle 1$, and $\angle AFD$ form a triangle, so by the given information $m \angle FAD + m \angle 1 + m \angle AFD = 180^{\circ}$. Substitution and the Subtraction Property of Equality show that $m \angle AFD = 90^{\circ}$. Then by the definition of right angle, $\angle FAB$ and $\angle AFD$ are right angles. \overline{AE} intersects both CD and AB in right angles, so AB and \overrightarrow{CD} are parallel lines.

3. x = 61, y = -64, $m \angle 1 = 177^{\circ}$, $m \angle 2 = 177^{\circ}$, $m \angle 3 = 3^{\circ}$

Practice and Problem Solving: Modified

- 1. Conv. of Corr. $\angle s$ Thm.
- 2. m $\angle 3 = 68^{\circ}$, $\angle 3 \cong \angle 7$, Conv. of Corr. $\angle s$ Thm.
- 3. parallel
- 4. transversal; congruent
- 5. supplementary
- 6. a. Given
 - b. $\angle 2$ and $\angle 3$ are supplementary
 - c. *m*||*n*

Reading Strategies

- 1. Converse of the Alternate Exterior Angles Theorem
- 2. Converse of the Same-Side Interior Angles Theorem
- 3. Converse of the Alternate Interior Angles Theorem
- 4. Converse of the Corresponding Angles Postulate
- 5. No; ∠1≠∠5.
- 6. 61°

Success for English Learners

- The given angles ∠2 and ∠6 are alternate interior angles. The Converse of the Alternative Interior Angles Theorem proves the lines are parallel.
- The given angles ∠8 and ∠4 are alternate exterior angles. The Converse of the Alternate Exterior Angles Theorem proves the lines are parallel.

LESSON 4-4

Practice and Problem Solving: A/B

- 1. *GH* = 16; *CH* = 12
- 2. *CR* = 17; *PQ* = 15
- 3. a. *m* ⊥ *n*
 - b. m $\angle 1 = 90^{\circ}; m \angle 2 = 90^{\circ}$
 - c. Def. of $\cong \angle s$
 - d. $\angle 1$ and $\angle 2$ are a linear pair.