\qquad
\qquad
\qquad

Lesson 4 Proving Lines Are Parallel Practice and Problem Solving: A/B

Use the figure for Problems 1-8. Tell whether lines m and n must be parallel from the given information. If they are, state your reasoning. (Hint: The angle measures may change for each problem, and the figure is for reference only.)

1. $\angle 7 \cong \angle 3$
\qquad
2. $\angle 7 \cong \angle 6$
\qquad
\qquad
3. $m \angle 8=(6 x-1)^{\circ}, m \angle 4=(5 x+3)^{\circ}, x=9$
4. $\angle 1 \cong \angle 5$
5. $\mathrm{m} \angle 3=(15 x+22)^{\circ}, \mathrm{m} \angle 1=(19 x-10)^{\circ}$, $x=8$
\qquad
6. Look at some of the printed letters in a textbook. The small horizontal and vertical segments attached to the ends of the letters are called serifs. Most of the letters in a textbook are in a serif typeface. The letters on this page do not have serifs, so these letters are in a sansserif typeface. (Sans means "without" in French.) The figure shows a capital letter A with serifs. Use the given information to write a paragraph proof that the serif, segment $\overline{H I}$, is parallel to segment $\overline{J K}$.

Given: $\angle 1$ and $\angle 3$ are supplementary.
Prove: $\overline{H I} \| \overline{J K}$

4. 62°
5. a. $\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$
b. Corr. $\angle \mathrm{s}$ Thm.
c. $\mathrm{m} \angle 1=\mathrm{m} \angle 2$
d. $m \angle 1+m \angle 3=180^{\circ}$
e. Subst.
6. $x=50 ; y=25$

Practice and Problem Solving: C

1. Possible answer: $\mathrm{m} \angle 1+\mathrm{m} \angle 2=180^{\circ}$ and $\mathrm{m} \angle 3+\mathrm{m} \angle 4=180^{\circ}$ by the Same-Side Int. $\angle \mathrm{s}$ Thm. Thus, the total of the angle measures is 360°.
2. 360°
3. 360°; Possible answer:

Statements	Reasons
1. Draw $\overline{B E}$ parallel to $\overline{A D}$.	1. Construction
$\text { 2. } \mathrm{m} \angle 1+\mathrm{m} \angle A B E=180^{\circ},$	2. Same-Side Int. $\angle \mathrm{s}$ Thm.
$\begin{aligned} & \text { 3. } \mathrm{m} \angle 1+\mathrm{m} \angle 4+\mathrm{m} \angle A B E+ \\ & \mathrm{m} \angle D E B=360^{\circ} \end{aligned}$	3. Add Prop. of $=$
$\begin{aligned} & \text { 4. } \mathrm{m} \angle 3+\mathrm{m} \angle C E B+ \\ & \mathrm{m} \angle C B E=180^{\circ} \end{aligned}$	4. Given
5. $\mathrm{m} \angle D E B+\mathrm{m} \angle C E B=180^{\circ}$	5. Lin. Pair Thm.
$\text { 6. } \mathrm{m} \angle 3+\mathrm{m} \angle C E B+\quad ~ \begin{aligned} & \mathrm{m} \angle C B E=\mathrm{m} \angle D E B+ \\ & \mathrm{m} \angle C E B \end{aligned}$	6. Subst. (Steps 4,5)
$\begin{aligned} & \text { 7. } \mathrm{m} \angle 3+\mathrm{m} \angle C B E= \\ & \mathrm{m} \angle D E B \end{aligned}$	7. Subtr. Prop. of $=$
8. $\mathrm{m} \angle 1+\mathrm{m} \angle 3+\mathrm{m} \angle 4+$ $\mathrm{m} \angle A B E+\mathrm{m} \angle C B E=$ 360°	8. Subst. (Steps 3,7)
$\begin{aligned} & \text { 9. } \mathrm{m} \angle 2=\mathrm{m} \angle A B E+ \\ & \mathrm{m} \angle C B E \end{aligned}$	9. Angle Add. Post.
$\begin{aligned} & \text { 10. } \mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3+ \\ & \mathrm{m} \angle 4=360^{\circ} \end{aligned}$	10. Subst. (Steps 8, 9)

Practice and Problem Solving:

Modified

1. 140°
2. 70°
3. 75
4. 150
5. congruent
6. equal
7. parallel; transversal
8. supplementary
9. congruent
10. $\angle 3$ and $\angle 5 ; \angle 4$ and $\angle 6$
11. $\angle 1$ and $\angle 7 ; \angle 2$ and $\angle 8$
12. $\angle 3$ and $\angle 6 ; \angle 4$ and $\angle 5$

Reading Strategies

1. $\angle 1 \cong \angle 5$
2. $\angle 2 \cong \angle 6$
3. $\angle 3 \cong \angle 7$
4. $\angle 4 \cong \angle 8$
5. $\angle 2 \cong \angle 8$
6. $\angle 3 \cong \angle 5$
7. $\angle 1 \cong \angle 7$
8. $\angle 4 \cong \angle 6$
9. $\angle 2+\angle 5=180^{\circ}$
10. $\angle 3+\angle 8=180^{\circ}$
11. $\mathrm{m} \angle 6=47^{\circ}$ by the Corresponding Angles Postulate
12. $\mathrm{m} \angle 3=133^{\circ}$ by the Same-Side Interior Angles Theorem

Success for English Learners

1. All the angle pairs will be either congruent angles or supplementary angles.
2. Same-side interior angles, angles that form a linear pair, and exterior angles on the same side of the transversal are supplementary angles.

LESSON 4-3

Practice and Problem Solving: A/B

1. $m \| n$; Conv. of Alt Int. $\angle \mathrm{s}$ Thm.
2. $m \| n$; Conv. of Corr. $\angle \mathrm{s}$ Thm.
3. m and n are parallel if and only if
$m \angle 7=90^{\circ}$.
4. $m \| n$; Conv. of Same-Side Int. $\angle \mathrm{s}$ Thm.
5. m and n are not parallel.
6. $m \| n$; Conv. of Corr. $\angle \mathrm{s}$ Thm.
7. $m \| n$; Conv. of Alt Ext. $\angle \mathrm{s}$ Thm.
8. m and n are not parallel.
9. Possible answer: The given information states that $\angle 1$ and $\angle 3$ are supplementary. $\angle 1$ and $\angle 2$ are also supplementary by the Linear Pair
Theorem. Therefore $\angle 3$ and $\angle 2$ must be congruent by the Congruent Supplements Theorem. Since $\angle 3$ and $\angle 2$ are congruent, $\overline{H I}$ and $\overline{J K}$ are parallel by the Converse of the Corresponding Angles Theorem.

Practice and Problem Solving: C

1. $x=11 ; y=-5 ; \mathrm{m} \angle 1=57^{\circ} ; \mathrm{m} \angle 2=57^{\circ}$; $\mathrm{m} \angle 3=123^{\circ}$
2.

Possible answer: Draw $\overrightarrow{A E}$ so it forms a 90° angle with $\overleftrightarrow{A B}$ by the Protractor Postulate. The Angle Addition Postulate states that $\mathrm{m} \angle F A D, \mathrm{~m} \angle 2=\mathrm{m} \angle F A B$, so by substitution $\mathrm{m} \angle F A D+\mathrm{m} \angle 2=90^{\circ}$. It is given that $\angle 1 \cong \angle 2$, so $\mathrm{m} \angle 1=\mathrm{m} \angle 2$ by the definition of congruent angles.
Substituting again reveals that
$\mathrm{m} \angle F A D+\mathrm{m} \angle 1=90^{\circ} . \angle F A D, \angle 1$,
and $\angle A F D$ form a triangle, so
by the given information
$\mathrm{m} \angle F A D+\mathrm{m} \angle 1+\mathrm{m} \angle A F D=180^{\circ}$.
Substitution and the Subtraction Property of Equality show that $\mathrm{m} \angle A F D=90^{\circ}$. Then by the definition of right angle, $\angle F A B$ and $\angle A F D$ are right angles. $\overrightarrow{A E}$ intersects both $\overrightarrow{C D}$ and $\overrightarrow{A B}$ in right angles, so $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are parallel lines.
3. $x=61, y=-64, \mathrm{~m} \angle 1=177^{\circ}, \mathrm{m} \angle 2=177^{\circ}$, $\mathrm{m} \angle 3=3^{\circ}$

Practice and Problem Solving: Modified

1. Conv. of Corr. $\angle \mathrm{s}$ Thm.
2. $\mathrm{m} \angle 3=68^{\circ}, \angle 3 \cong \angle 7$, Conv. of Corr. $\angle \mathrm{s}$ Thm.
3. parallel
4. transversal; congruent
5. supplementary
6. a. Given
b. $\angle 2$ and $\angle 3$ are supplementary
c. $m \| n$

Reading Strategies

1. Converse of the Alternate Exterior Angles Theorem
2. Converse of the Same-Side Interior Angles Theorem
3. Converse of the Alternate Interior Angles Theorem
4. Converse of the Corresponding Angles Postulate
5. No; $\angle 1 \neq \angle 5$.
6. 61°

Success for English Learners

1. The given angles $\angle 2$ and $\angle 6$ are alternate interior angles. The Converse of the Alternative Interior Angles Theorem proves the lines are parallel.
2. The given angles $\angle 8$ and $\angle 4$ are alternate exterior angles. The Converse of the Alternate Exterior Angles Theorem proves the lines are parallel.

LESSON 4-4

Practice and Problem Solving: A/B

1. $G H=16 ; C H=12$
2. $C R=17 ; P Q=15$
3. a. $m \perp n$
b. $\mathrm{m} \angle 1=90^{\circ} ; \mathrm{m} \angle 2=90^{\circ}$
c. Def. of $\cong \angle \mathrm{s}$
d. $\angle 1$ and $\angle 2$ are a linear pair.
