15-2 Graphing Logarithmic Functions *Practice and Problem Solving: A/B*

Graph each function. Find the asymptote. Tell how the graph is transformed from the graph of its parent function.

Write each transformed function.

- 5. The function $f(x) = \log (x + 1)$ is reflected across the *x*-axis and translated down 4 units.
- 6. The function $f(x) = \log_8 (x 3)$ is compressed vertically by a factor of $\frac{2}{5}$

and translated up 11 units.

Solve.

7. The function $A(t) = Pe^{rt}$ is used to calculate the balance, A, of an investment in which the interest is compounded continuously at an annual rate, r, over t years. Find the inverse of the formula. Describe what information the inverse gives.

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

- 24. *x* = 2 25. *x* = 4 26. *x* = 9 27. *x* = 4 28. *x* = 3 29. *x* = 2
- 30. *x* = 3

Reading Strategies

- 1. $4^2 = 16$; $log_5 0.2 = -1$; $log_8 1 = 0$
- 2. $\log_b 1 = 0$ is the same as $b^0 = 1$ and any number to the 0 power is 1.
- 3. $f^{-1}(x) = \log_4 x$
- 4. a. $g^{-1}(x) = \log_{\frac{1}{2}} x$
 - b. Domain of g(x): all real numbers; range of g(x): y > 0; domain of g⁻¹(x): x > 0; range of g⁻¹(x): all real numbers.

Success for English Learners

- 1. Exponential form has an exponent in it, and logarithmic form has a "log" in it.
- 2. Look at the number to the right and below "log." If there is no number there, the base is 10.
- 3. If $\log_b x = 0$, then x has to be 1.

LESSON 15-2

Practice and Problem Solving: A/B

1. x = 0; Graph of $f(x) = \log_2 x$ translated 4 units up;

2. x = -6; Graph of $f(x) = \log_4 x$ stretched vertically by a factor of 3 and translated 6 units left

3. x = -5; Graph of $f(x) = \log x$ translated 5 units left;

4. x = 0; Graph of $f(x) = \ln x$ translated units up;

6.
$$g(x) = \frac{2}{5}\log_8(x-3) + 11$$

7. $t(A) = \frac{1}{r} \ln \left(\frac{A}{P}\right)$; The inverse gives the time it takes for an investment to reach a certain balance *A*.

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.