\qquad Date \qquad
\qquad

LEsson Graphing Logarithmic Functions
 Practice and Problem Solving: A/B

Graph each function. Find the asymptote. Tell how the graph is transformed from the graph of its parent function.

1. $f(x)=\log _{2} x+4$

2. $f(x)=3 \log _{4}(x+6)$

3. $f(x)=3+\ln x$

Write each transformed function.

5. The function $f(x)=\log (x+1)$ is reflected across the x-axis and translated down 4 units.
6. The function $f(x)=\log _{8}(x-3)$ is compressed vertically by a factor of $\frac{2}{5}$ and translated up 11 units.

Solve.

7. The function $A(t)=P e^{r t}$ is used to calculate the balance, A, of an investment in which the interest is compounded continuously at an annual rate, r, over t years. Find the inverse of the formula. Describe what information the inverse gives.
8. $x=2$
9. $x=4$
10. $x=9$
11. $x=4$
12. $x=3$
13. $x=2$
14. $x=3$

Reading Strategies

1. $4^{2}=16 ; \log _{5} 0.2=-1 ; \log _{8} 1=0$
2. $\log _{b} 1=0$ is the same as $b^{0}=1$ and any number to the 0 power is 1 .
3. $f^{-1}(x)=\log _{4} x$
4. a. $g^{-1}(x)=\log _{\frac{1}{2}} x$
b. Domain of $g(x)$: all real numbers; range of $g(x): y>0$; domain of $g^{-1}(x): x>0$; range of $g^{-1}(x)$: all real numbers.

Success for English Learners

1. Exponential form has an exponent in it, and logarithmic form has a "log" in it.
2. Look at the number to the right and below "log." If there is no number there, the base is 10 .
3. If $\log _{b} x=0$, then x has to be 1 .

LESSON 15-2

Practice and Problem Solving: A/B

1. $x=0$; Graph of $f(x)=\log _{2} x$ translated 4 units up;

2. $x=-6$; Graph of $f(x)=\log _{4} x$ stretched vertically by a factor of 3 and translated 6 units left

3. $x=-5$; Graph of $f(x)=\log x$ translated 5 units left;

4. $x=0$; Graph of $f(x)=\ln x$ translated units up;

5. $g(x)=-\log (x+1)-4$
6. $g(x)=\frac{2}{5} \log _{8}(x-3)+11$
7. $t(A)=\frac{1}{r} \ln \left(\frac{A}{P}\right)$; The inverse gives the time it takes for an investment to reach a certain balance A.
