\qquad
\qquad

Lesson
 15-1
 Defining and Evaluating a Logarithmic Function

 Practice and Problem Solving: A/BWrite each exponential equation in logarithmic form.

1. $3^{7}=2187$
2. $12^{2}=144$
3. $5^{3}=125$

Write each logarithmic equation in exponential form.
4. $\log _{10} 100,000=5$
5. $\log _{4} 1024=5$
6. $\log _{9} 729=3$

Evaluate each expression without using a calculator.
7. $\log 1,000,000$
\qquad
10. $\log _{4} 16$
8. $\log 10$
\qquad
11. $\log _{8} 1$
9. $\log 1$
12. $\log _{5} 625$

Use the given x-values to graph each function. Then graph its inverse. Write an equation for the inverse function and describe its domain and range.
13. $f(x)=2^{x} ; x=-2,-1,0,1,2,3,4$

14. $f(x)=\left(\frac{1}{2}\right)^{x} ; x=-3,-2,-1,0,1,2,3$

Solve.

15. The acidity level, or pH , of a liquid is given by the formula $\mathrm{pH}=\log \frac{1}{\left[\mathrm{H}^{+}\right]}$, where $\left[\mathrm{H}^{+}\right]$is the concentration (in moles per liter) of hydrogen ions in the liquid. The hydrogen ion concentration in moles per liter for a certain brand of tomato vegetable juice is 0.000316 .
a. Write a logarithmic equation for the pH of the juice.
b. What is the pH of the juice?

Reading Strategies

1. a. Quadratic function
b. The data set has constant second differences between y-values for evenly spaced x-values and is shaped like a parabola.
2. a. Linear function
b. The data set has constant first differences between y-values for evenly spaced x-values and the graph is a straight line.
3. Possible answer: An exponential function because the plot appears to show curvature and the right side looks like it might have the x-axis as an asymptote.

Success for English Learners

1. A linear model has data that forms a straight line instead of a curve. An exponential model has a curve, but approaches an asymptote. This model appears to curve then return, in the shape of a downward opening parabola.
2. Possible answer: This regression model appears to be a fair fit, but not a very close fit. The data points appear close to the curve and on either side of it, but the points near the end are well below the curve.

MODULE 14 Challenge

1.

Square \boldsymbol{n}	Grains of Wheat on Square \boldsymbol{n}	Total Grains of Wheat on Board
1	1	1
2	2	3
3	4	7
4	8	15
5	16	31
6	32	63
7	64	127
8	128	255
9	256	511
10	512	1023

2. 2^{n-1}
3. $2^{63}=9,223,372,036,854,775,808$
4. $2^{n}-1$
5. $2^{64}-1=18,446,744,073,709,551,615$
6. $147,573,952,589,676$ kilograms
7. 254.4 years

MODULE 15 Logarithmic Functions

LESSON 15-1

Practice and Problem Solving: A/B

1. $\log _{3} 2187=7$
2. $\log _{12} 144=2$
3. $\log _{5} 125=3$
4. $10^{5}=100,000$
5. $4^{5}=1024$
6. $9^{3}=729$
7. 6
8. 1
9. 0
10. 2
11.0
11. 4
12. $f^{-1}(x)=\log _{2}(x)$; Domain: $\{x \mid x>0\}$; range: all real numbers

13. $f^{-1}(x)=\log _{\frac{1}{2}}(x)$; Domain: $\{x \mid x>0\}$; range: all real numbers

14. a. $\mathrm{pH}=\log \frac{1}{0.000316}$
b. 3.5

Practice and Problem Solving: C

1. $\log _{20} 8000=3$
2. $\log _{11} 14,641=4$
3. $\log _{a} c=b$
4. $10^{7}=10,000,000$
5. $6^{3}=216$
6. $p^{r}=q$
7. 0
8. 4
9. 3
10.5
11.0
10. 4
11. $f^{-1}(x)=\log _{0.1}(x)$; Domain: $\{x \mid x>0\}$;
range: all real numbers

12. $f^{-1}(x)=\log _{\frac{5}{2}}(x)$; Domain: $\{x \mid x>0\}$;
range: all real numbers

13. a. $\mathrm{pH}=\log \frac{1}{0.00794}$
b. 2.1

Practice and Problem Solving: Modified

1. 3
2. 6
3. 2
4. $\log _{2} 8=3$
5. $\log _{17} 1=0$
6. $\log _{2} \frac{1}{8}=3$
7. $\log _{4} 1024=5$
8. $\log _{3} 729=6$
9. $\log _{5} 625=4$
10. 4^{3}
11. 8^{3}
12. 6^{2}
13. $10^{2}=100$
14. $5^{3}=125$
15. $9^{0}=1$
16. $2^{7}=128$
$17.3^{5}=243$
17. $100^{3}=1,000,000$
19.4
20.5
18. 0
19. $x=4$
20. $x=0$
