\qquad

L2Eson Using Proportional Relationships
 Practice and Problem Solving: A/B

Refer to the figure for Problems 1-3. The figure shows

 triangles $A B C$ and $D E F$ formed by a person and a tree with their shadows. The figure is not drawn to scale.1. Jim, shown by $\overline{A B}$, is 5 feet, 8 inches tall. He casts a shadow that is 6 feet, 4 inches long. A tree, shown by $\overline{D E}$, casts a shadow that is 19 feet long. How tall is the tree?
2. Alicia is 5 feet, 4 inches tall. She casts a shadow that is 6 feet long. The tree casts a shadow that is 18 feet long. How tall is the tree?

3. Explain why triangles $A B C$ and $D E F$ are similar.

Refer to the figure for Problems 4-6. In the figure, $\overline{P Q}$ represents the width of a lake. $\overline{P Q}$ and $\overline{S T}$ are parallel. The figure is not drawn to scale.
4. Suppose $P R=45$ meters, $R T=16$ meters, and $S T=24$ meters. What is the width of the lake? \qquad
5. Suppose $Q R=52$ yards, $R S=15$ yards, and $S T=20$ yards. How wide is the lake? \qquad

Refer to the figure for Problems 6 and 7. A mirror is placed on the ground, shown by point N, so that a person looking at it can see the top of a nearby statue, shown by point P. The figure is not drawn to scale.
6. The mirror is placed 30 feet away from the statue, and Jean stands 5 feet from the mirror. If her eyes are 5 feet, 6 inches above the ground, shown by $\overline{L M}$, how tall is the statue?
7. The mirror is placed 5 meters away from the statue and Paul stands 1 meter from the mirror. If his eyes are 1.5 meters above the ground, how tall is the statue? \qquad

6.

7.

8.

9.

10.

11.

Reading Strategies

1. Possible answer: The length of the segment is multiplied by the ratio of the lengths of the parts the segment is divided into.
2. Possible answer: To find the distance from A to B in a one-dimensional system, you find the absolute value of the difference of the single values associated to points A and B. You find the absolute value of the difference of the x - and y-coordinates.

Success for English Learners

1. Possible answer: Subtracting the coordinates finds the difference or distance between them.
2. Possible answer: The ratio describes the distance that P is from A. Adding that distance to the coordinates of A locates the coordinates of P.

LESSON 12-3

Practice and Problem Solving: A/B

1. 17 ft
2. 16 ft
3. The rays of the sun are parallel, so $\overline{A C}$ and $\overline{D F}$ are parallel. Thus, $\angle C$ and $\angle F$ are congruent. $\angle B \cong \angle E$ because they are right angles. Thus, the triangles are similar by the $A A$ Similarity Criterion.
4. 67.5 m
5. $69 \mathrm{yd}, 1 \mathrm{ft}$
6. 33 ft
7. 7.5 m

Practice and Problem Solving: C

1. $18 \mathrm{ft}, 4 \frac{1}{2} \mathrm{in}$.
2. approximately $5 \mathrm{ft}, 9 \mathrm{in}$.
3. 42 m
4. $\frac{5}{12}$
5. Because $\overline{P R}$ and $\overline{U V}$ are parallel, $\angle W U V \cong \angle P$ and $\angle W V U \cong \angle R$ since they are Corresponding Angles. Thus, the triangles are similar by the AA Similarity Criterion.
6. $x=\frac{26}{7}, y=\frac{42}{13}$
