\qquad
\qquad
\qquad

Lesson Geometric Sequences

Practice and Problem Solving: A/B

Each rule represents a geometric sequence. If the given rule is recursive, write it as an explicit rule. If the rule is explicit, write it as a recursive rule. Assume that $f(1)$ is the first term of the sequence.

1. $f(n)=11(2)^{n-1}$
2. $f(1)=2.5 ; f(n)=f(n-1) \cdot 3.5$ for $n \geq 2$
3. $f(1)=27 ; f(n)=f(n-1) \cdot \frac{1}{3}$ for $n \geq 2$
4. $f(n)=-4(0.5)^{n-1}$

Write an explicit rule for each geometric sequence based on the given terms from the sequence. Assume that the common ratio r is positive.
5. $a_{1}=90$ and $a_{2}=360$
6. $a_{1}=16$ and $a_{3}=4$
7. $a_{1}=2$ and $a_{5}=162$
9. $a_{4}=135$ and $a_{5}=405$
\qquad
11. $a_{2}=80$ and $a_{5}=10$
\qquad
A bank account earns a constant rate of interest each month.
The account was opened on March 1 with $\$ 18,000$ in it. On April 1, the balance in the account was $\$ 18,045$. Use this information for Problems 13-15.
13. Write an explicit rule and a recursive rule that can be used to find $A(n)$, the balance after n months.
\qquad
14. Find the balance after 5 months.
\qquad
15. Find the balance after 5 years.

Success for English Learners

1. A sequence is an arithmetic sequence if it has a common difference.
2. $-7,-13,-19,-25,-31$

LESSON 12-2

Practice and Problem Solving: A/B

1. $f(1)=11 ; f(n)=f(n-1) \cdot 2$ for $n \geq 2$
2. $f(n)=2.5(3.5)^{n-1}$
3. $f(n)=27\left(\frac{1}{3}\right)^{n-1}$
4. $f(1)=-4 ; f(n)=f(n-1) \cdot 0.5$ for $n \geq 2$
5. $f(n)=90(4)^{n-1}$
6. $f(n)=16(0.5)^{n-1}$
7. $f(n)=2(3)^{n-1}$
8. $f(n)=90\left(\frac{1}{3}\right)^{n-1}$
9. $f(n)=5(3)^{n-1}$
10. $f(n)=625(0.8)^{n-1}$
11. $f(n)=160(0.5)^{n-1}$
12. $f(n)=22,000(0.1)^{n-1}$
13. $A(n)=18,000(1.0025)^{n-1}$;

$$
\begin{aligned}
& A(1)=18,000 ; \\
& A(n)=A(n-1) \cdot 1.0025 \text { for } n \geq 2
\end{aligned}
$$

14. $\$ 18,180.68$
15. \$20,856.96

Practice and Problem Solving: C

1. $f(n)=\frac{2}{3}(8)^{n-1}$
2. $f(1)=-10$;
$f(n)=f(n-1) \cdot 0.4$ for $n \geq 2$
3. $f(n)=6(3)^{n-1}$
4. $f(n)=18(0.5)^{n-1}$
5. $f(n)=10,000(0.01)^{n-1}$
6. $f(n)=\frac{1}{3}\left(\frac{1}{4}\right)^{n-1}$
7. $f(n)=200\left(\frac{2}{5}\right)^{n-1}$
8. $f(n)=-\frac{8}{3}\left(\frac{3}{2}\right)^{n-1}$
9. For $r>0, f(n)=2.5(4)^{n-1}$. For $r<0$, $f(n)=2.5(-4)^{n-1}$.
10. 88,573
11. 5\%
12. Since there are 64 teams, the first round has 32 games. So, $T(n)=32(0.5)^{n-1}$.
The domain is $\{1,2,3,4,5,6\}$.

Practice and Problem Solving: Modified

1. 270
2. 250
3. 32
4. 25
5. $f(n)=7(3)^{n-1}$
6. $f(1)=16 ; f(n)=f(n-1) \cdot 8$ for $n \geq 2$
7. $f(1)=4.5 ; f(n)=f(n-1) \cdot 13$ for $n \geq 2$
8. $f(n)=100(0.6)^{n-1}$
9. $f(n)=9(2)^{n-1}$
10. $f(n)=2(10)^{n-1}$
11. $f(n)=5(4)^{n-1}$
12. $f(n)=4(3)^{n-1}$
13. $p(n)=20,000(1.04)^{n-1}$;
$p(1)=20,000 ;$
$p(n)=p(n-1) \cdot 1.04$ for $n \geq 2$
14. $p(5)=23,397 ; p(10)=29,605$
15. The explicit rule is easier since you only have to evaluate one expression to find each prediction.

Reading Strategies

1. 2
2. 3
3. Possible answer: I divided each term by the previous term.
4. 486
5. 354,294
6. No; the ratios between terms are different.
7. 18,144
