\qquad
\qquad
\qquad

L2-1 Practice and Problem Solving: A/B

For Problems 1-4, find the value of \boldsymbol{x}.
1.

\qquad
3.

2.

4.

For Problems 5 and 6, determine whether the given segments are parallel.
5. $\overline{P Q}$ and $\overline{N M}$
\qquad
\qquad
\qquad
\qquad
6. $\overline{W X}$ and $\overline{D E}$
\qquad
\qquad
\qquad

MODULE 12 Using Similar Triangles

LESSON 12-1

Practice and Problem Solving: A/B

1. 4
2. $5 \frac{2}{5}$
3. 20
4. 30
5. $P N=66$ and $Q M=88 . \frac{L P}{P N}=\frac{9}{66}=\frac{3}{22}$ and $\frac{L Q}{Q M}=\frac{12}{88}=\frac{3}{22}$. Because $\frac{L P}{P N}=\frac{L Q}{Q M}$,
$\overline{P Q} \| \overline{N M}$ by the Conv. of the Δ
Proportionality Theorem.
6. $\frac{F W}{W D}=\frac{1.5}{2.5}=\frac{3}{5}$ and $\frac{F X}{X E}=\frac{2.1}{3.5}=\frac{3}{5}$.

Because $\frac{F W}{W D}=\frac{F X}{X E}, \overline{W X} \| \overline{D E}$ by the
Conv. of the Δ Proportionality Theorem.

Practice and Problem Solving: C

1. Possible answer: It is given that $\overline{E F} \| \overline{B C}$. $\angle B$ corresponds to $\angle A E F$ and $\angle C$ corresponds to $\angle A F E$ on the transversals, so $\angle B \cong \angle A E F$ and $\angle C \cong \angle A F E$. Thus, $\triangle A B C \sim \triangle A E F$ by the AA Similarity Postulate. By the definition of similar polygons, $\frac{A B}{A E}=\frac{A C}{A F}$. But by the Segment Addition Postulate, $A B=A E+E B$ and $A C=A F+F C$. Substitution leads to $\frac{A E+E B}{A E}=\frac{A F+F C}{A F}$. This can be simplified to $1+\frac{E B}{A E}=1+\frac{F C}{A F}$. The Subtraction Property of Equality shows that $\frac{E B}{A E}=\frac{F C}{A F}$, which can be rewritten as $\frac{A E}{E B}=\frac{A F}{F C}$.
2. $-4+4 \sqrt{2}$
3. $A X=20$ miles; $A Y=15$ miles
4. Possible answer: Since it is given that $\angle A B D \cong \angle C B D$ and by the Angle Addition Postulate $\mathrm{m} \angle A B D+\mathrm{m} \angle C B D=\mathrm{m} \angle A B C$, $2 \mathrm{~m} \angle A B D=\mathrm{m} \angle A B C$. Since $\overline{B E} \cong \overline{B C}$, $\triangle B E C$ is isosceles, so $\angle B C E \cong \angle E$. By the Exterior Angles Theorem, $\mathrm{m} \angle A B C=$ $\mathrm{m} \angle B C E+\mathrm{m} \angle E$. Substitution shows that $2 \mathrm{~m} \angle A B D=2 \mathrm{~m} \angle E$ or $\mathrm{m} \angle A B D=\mathrm{m} \angle E$. Because $\angle A B D$ and $\angle E$ are congruent corresponding angles, $\overline{B D} \| \overline{E C}$. By the Triangle Proportionality Theorem, $\frac{A B}{B E}=\frac{A D}{D C}$. Thus, by substituting $B C$ for $B E, \frac{A B}{B C}=\frac{A D}{D C}$.

Practice and Problem Solving: Modified

1. parallel
2. Triangle Proportionality
3. third side
4. They are parallel lines.
5. $\frac{4}{5}$
6. $\frac{x}{15}=\frac{4}{5}$
7. 12
8. $\frac{18}{15} ; \frac{6}{5}$
9. $\frac{24}{20} ; \frac{6}{5}$
10. Yes; Converse to the Triangle Proportionality Theorem.

Reading Strategies

1. $\overline{D F}$ and $\overline{E F}$
2. Possible answer: Measure $\angle F A B$ and $\angle D$. They should be equal to each other.
3. $\overline{D A}$ and $\overline{A F}$
4. $\overline{E B}$ and $\overline{B F}$
5. $\frac{A F}{D A}$
6. $\frac{B F}{E B}$
