LESSON

Practice and Problem Solving: A/B

For Problems 1–4, find the value of *x*.

For Problems 5 and 6, determine whether the given segments are parallel.

5. \overline{PQ} and \overline{NM}

6. \overline{WX} and \overline{DE}

MODULE 12 Using Similar Triangles

LESSON 12-1

Practice and Problem Solving: A/B

- 1.4
- 2. $5\frac{2}{5}$
- 3. 20
- 4.30

5. PN = 66 and QM = 88. $\frac{LP}{PN} = \frac{9}{66} = \frac{3}{22}$ and $\frac{LQ}{QM} = \frac{12}{88} = \frac{3}{22}$. Because $\frac{LP}{PN} = \frac{LQ}{QM}$,

 $PQ \parallel NM$ by the Conv. of the Δ Proportionality Theorem.

6. $\frac{FW}{WD} = \frac{1.5}{2.5} = \frac{3}{5}$ and $\frac{FX}{XE} = \frac{2.1}{3.5} = \frac{3}{5}$. Because $\frac{FW}{WD} = \frac{FX}{XE}$, $\overline{WX} \parallel \overline{DE}$ by the Conv. of the \triangle Proportionality Theorem.

Practice and Problem Solving: C

1. Possible answer: It is given that $\overline{EF} \parallel \overline{BC}$. $\angle B$ corresponds to $\angle AEF$ and $\angle C$ corresponds to $\angle AFE$ on the transversals, so $\angle B \cong \angle AEF$ and $\angle C \cong \angle AFE$. Thus, $\triangle ABC \sim \triangle AEF$ by the AA Similarity Postulate. By the definition of similar polygons, $\frac{AB}{AF} = \frac{AC}{AF}$. But by the Segment Addition Postulate. AB = AE + EB and AC = AF + FC. Substitution leads to $\frac{AE + EB}{AE} = \frac{AF + FC}{AF}$. This can be simplified to $1 + \frac{EB}{AF} = 1 + \frac{FC}{AF}$. The Subtraction Property of Equality shows that $\frac{EB}{AE} = \frac{FC}{AE}$, which can be rewritten as $\frac{AE}{FB} = \frac{AF}{FC}$ 2 $-4+4\sqrt{2}$ 3. AX = 20 miles; AY = 15 miles

4. Possible answer: Since it is given that $\angle ABD \cong \angle CBD$ and by the Angle Addition Postulate m $\angle ABD + m \angle CBD = m \angle ABC$, $2m \angle ABD = m \angle ABC$. Since $\overline{BE} \cong \overline{BC}$, $\triangle BEC$ is isosceles, so $\angle BCE \cong \angle E$. By the Exterior Angles Theorem, m $\angle ABC =$ $m \angle BCE + m \angle E$. Substitution shows that $2m \angle ABD = 2m \angle E$ or $m \angle ABD = m \angle E$. Because $\angle ABD$ and $\angle E$ are congruent corresponding angles, $\overline{BD} \parallel \overline{EC}$. By the Triangle Proportionality Theorem, $\frac{AB}{BE} = \frac{AD}{DC}$. Thus, by substituting *BC* for BE, $\frac{AB}{BC} = \frac{AD}{DC}$.

Practice and Problem Solving: Modified

- 1. parallel
- 2. Triangle Proportionality
- 3. third side
- 4. They are parallel lines.
- 5. $\frac{4}{5}$

6.
$$\frac{x}{15} = \frac{4}{5}$$

7. 12

8.
$$\frac{18}{15}$$
; $\frac{6}{5}$

9.
$$\frac{24}{3}; \frac{6}{3}$$

- 20' 5
- 10. Yes; Converse to the Triangle Proportionality Theorem.

Reading Strategies

- 1. \overline{DF} and \overline{EF}
- 2. Possible answer: Measure $\angle FAB$ and $\angle D$. They should be equal to each other.
- 3. \overline{DA} and \overline{AF}
- 4. \overline{EB} and \overline{BF}
- 5. $\frac{AF}{DA}$
- $6. \ \frac{BF}{EB}$