\qquad Date \qquad
\qquad

Llesson Corresponding Parts of Similar Figures

Practice and Problem Solving: A/B

For Problems 1-3, apply properties of similar figures.

1. Devon says that triangles $T U V$ and $X Y Z$ are similar because $\frac{T U}{X Y}=\frac{U V}{Y Z}=\frac{X Z}{T V}$. What is wrong with his reasoning?
\qquad
2. Triangles CDE and $F G H$ are similar. Write three proportions relating the triangles' side lengths, and three statements about their angle measures.
\qquad
3. Are all rhombuses similar? Explain your answer.

Use the diagram for Problems 4 and 5.

4. In the diagram of the tandem bike, $\overline{A E} \| \overline{B D}$. Explain why $\triangle C B D \sim \triangle C A E$.
5. Find $C E$ to the nearest tenth. Show your work.

For Problems 6 and 7, show that the figures are similar by using a ruler to find the center of dilation. Name the center point.
6. \qquad , \qquad)

7. \qquad , \qquad)

4. smaller
5. 80; 20; 2
6. transformations; similar

Reading Strategies

1. Sequence of transformations: reflection and dilation
2. Single dilation

Success for English Learners

1. A reduction
2. X is the image of Q, so X should lie at $(2 \times 2.5,4 \times 2.5)$, or $(5,10)$.

LESSON 11-3

Practice and Problem Solving: A/B

1. He has switched the side lengths of the triangles in the last ratio of the proportion.
2. Possible answers: $\frac{C D}{F G}=\frac{D E}{G H} ; \frac{C D}{F G}=\frac{C E}{F H}$; $\frac{D E}{G H}=\frac{C E}{F H} ; \mathrm{m} \angle C=\mathrm{m} \angle F ; \mathrm{m} \angle D=\mathrm{m} \angle G ;$ $\mathrm{m} \angle E=\mathrm{m} \angle H$
3. No. The side lengths of all rhombuses are proportional, but the angles can vary.
4. $\angle C B D \cong \angle C A E$ by Corresponding Angles Theorem. $\angle C \cong \angle C$ by the Reflexive Property. So $\triangle C B D \cong \triangle C A E$ by AA.
5. $\frac{6}{14}=\frac{20}{C E} ; C E=(20 \times 14) \div 6 \approx 46.7 \mathrm{in}$.
6. $(6,-4)$

7. $(-8,7)$

Practice and Problem Solving: C

1. $\frac{C D}{F G}=\frac{D E}{G H} ; \frac{C D}{F G}=\frac{C E}{F H} ; \frac{D E}{G H}=\frac{C E}{F H}$;
$\frac{C D}{D E}=\frac{F G}{G H} ; \frac{C D}{C E}=\frac{F G}{F H} ; \frac{D E}{C E}=\frac{G H}{F H} ;$
$\mathrm{m} \angle C=\mathrm{m} \angle F ; \mathrm{m} \angle D=\mathrm{m} \angle G ; \mathrm{m} \angle E=\mathrm{m} \angle H$
2. Possible answer: $\frac{C D}{F G}=\frac{D E}{G H}$ and
$\frac{C D}{D E}=\frac{F G}{G H} ; w=C D ; x=F G ; y=D E ;$
$z=G H$. Substitute the letters into the first proportion: $\frac{w}{x}=\frac{y}{z}$. Cross multiply:
$w z=x y$. Divide both sides by z and by y :
$\frac{w}{y}=\frac{x}{z}$. Replace the letters with the side lengths to get the second proportion.
3. 9
4. No. $\frac{W X}{X Y} \neq \frac{X Z}{Y Z}$
5. $A D B ; B D C$
6. $\triangle A B C$ and $\triangle A D B: \frac{2}{1}$
$\triangle A B C$ and $\triangle B D C: \frac{2 \sqrt{3}}{3}$
$\triangle B D C$ and $\triangle A D B: \frac{\sqrt{3}}{1}$
7. $6+2 \sqrt{3}$
8. $3+\sqrt{3} ; 3+3 \sqrt{3}$
