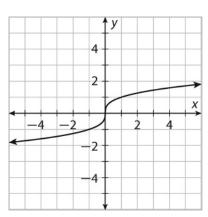
LESSON

Graphing Cube Root Functions

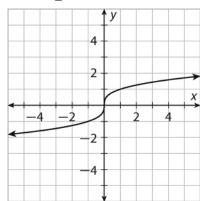
Practice and Problem Solving: A/B

Graph each cube root function. Then describe the graph as a transformation of the graph of the parent function. (The graph of the parent function is shown.)

1.
$$g(x) = \sqrt[3]{x-3} + 2$$

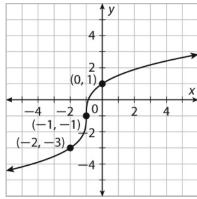


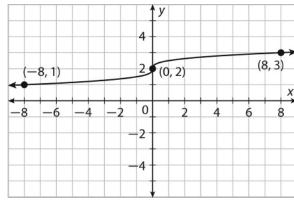
2.
$$g(x) = \frac{1}{2}\sqrt[3]{x+2} - 3$$



Write the equation of the cube root function shown on the graph. Use the form $g(x) = a\sqrt[3]{x-h} + k$.

3.





Write an equation, g(x), for the transformation equation described.

- 5. The graph of $f(x) = \sqrt[3]{x}$ is reflected across the *y*-axis and then translated 4 units down and 12 units to the left.
- 6. The graph of $f(x) = \sqrt[3]{x}$ is stretched vertically by a factor of 8, reflected across the x-axis, and then translated 11 units to the right.

4. a. −1

b. 1

c. -3

d. 2

e. Translated 2 units up, 3 units left, and reflected across the *x*-axis.

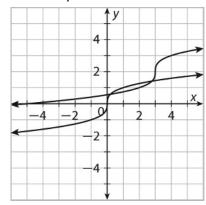
Success for English Learners

- 1. In the function $f(x) = a\sqrt{x-h} + k$, the value of a tells you if the function is stretch or compressed.
- 2. In the function $f(x) = a\sqrt{x-h} + k$ or the function $f(x) = \sqrt{\frac{1}{b}(x-h)} + k$, the value of k tells you how the function is shifted up or down.
- 3. In the function $f(x) = \sqrt{\frac{1}{b}(x-h)} + k$, if the value of b is less than 0, the function is reflected over the y-axis.

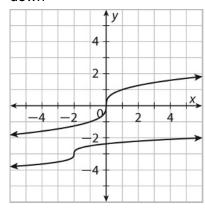
LESSON 10-3

Practice and Problem Solving: A/B

1. Translation 3 units to the right and 2 units up



2. Vertical compression by a factor of $\frac{1}{2}$; translation 2 units to the left and 3 units down



3.
$$g(x) = 2\sqrt[3]{x+1} - 1$$

4.
$$g(x) = \frac{1}{2}\sqrt[3]{x} + 2$$

5.
$$g(x) = \sqrt[3]{-x+12}-4$$

6.
$$g(x) = -8\sqrt[3]{x-11}$$

Practice and Problem Solving: C

1. Reflection across the *x*-axis, vertical stretch by a factor of 2.5, translation 2 units left and 1.5 units up

