\qquad

Lesson Graphing Cube Root Functions

Practice and Problem Solving: A/B

Graph each cube root function. Then describe the graph as a transformation of the graph of the parent function. (The graph of the parent function is shown.)

1. $g(x)=\sqrt[3]{x-3}+2$

2. $g(x)=\frac{1}{2} \sqrt[3]{x+2}-3$

Write the equation of the cube root function shown on the graph.
Use the form $g(x)=a \sqrt[3]{x-h}+k$.
3.

4.

Write an equation, $\boldsymbol{g}(\boldsymbol{x})$, for the transformation equation described.
5. The graph of $f(x)=\sqrt[3]{x}$ is reflected across the y-axis and then translated 4 units down and 12 units to the left.
6. The graph of $f(x)=\sqrt[3]{x}$ is stretched vertically by a factor of 8 , reflected across the x-axis, and then translated 11 units to the right.
4. a. -1
b. 1
c. -3
d. 2
e. Translated 2 units up, 3 units left, and reflected across the x-axis.

Success for English Learners

1. In the function $f(x)=a \sqrt{x-h}+k$, the value of a tells you if the function is stretch or compressed.
2. In the function $f(x)=a \sqrt{x-h}+k$ or the function $f(x)=\sqrt{\frac{1}{b}(x-h)}+k$, the value of k tells you how the function is shifted up or down.
3. In the function $f(x)=\sqrt{\frac{1}{b}(x-h)}+k$, if the value of b is less than 0 , the function is reflected over the y-axis.

LESSON 10-3

Practice and Problem Solving: A/B

1. Translation 3 units to the right and 2 units up

2. Vertical compression by a factor of $\frac{1}{2}$; translation 2 units to the left and 3 units down

3. $g(x)=2 \sqrt[3]{x+1}-1$
4. $g(x)=\frac{1}{2} \sqrt[3]{x}+2$
5. $g(x)=\sqrt[3]{-x+12}-4$
6. $g(x)=-8 \sqrt[3]{x-11}$

Practice and Problem Solving: C

1. Reflection across the x-axis, vertical stretch by a factor of 2.5 , translation 2 units left and 1.5 units up

