

Graph each function, and identify its domain and range.

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

Practice and Problem Solving: Modified

9. s =
$$\sqrt{A}$$

10. $s = \sqrt{121} = 11$ units

Reading Strategies

1. a. g(x)b. $\{x|x \ge 0\}$ 2. f(x)3. a. $f^{-1}(x) = \sqrt[3]{x+5}$ b. $g^{-1}(x) = \sqrt{\frac{x}{12}}$ or $\frac{1}{6}\sqrt{3x}$

Success for English Learners

- 1. No; Possible explanation: A cube root function is defined for all real number values of *x*.
- 2. Possible answer: I could find the inverse of the inverse, since the inverse of the inverse of a function is the original function.

LESSON 10-2

Practice and Problem Solving: A/B

2. $\{x \mid x \ge 0\}; \{y \mid y \ge 1\}$

- 3. Vertical stretch by a factor of 4 and horizontal translation 8 units left
- 4. Reflection across the *x*-axis, horizontal compression by a factor of $\frac{1}{3}$, and vertical translation 2 units up

5.
$$g(x) = 7\sqrt{-x} - 3$$

6.
$$g(x) = -\sqrt{2(x-2)}$$

7. a.
$$r = \sqrt{\frac{50}{\pi}} \approx 3.99$$
 inches

b. If volume goes from V to 2V, radius must go from $r = \sqrt{\frac{V}{\pi h}}$ to

$$r_{\rm new} = \sqrt{\frac{2V}{\pi h}} = \sqrt{2}\sqrt{\frac{V}{\pi h}} = \sqrt{2}r$$
. So, the

radius must be multiplied by $\sqrt{2}$.

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.