\qquad Date \qquad
\qquad

LEsson Graphing Square Root Functions
 Practice and Problem Solving: A/B

Graph each function, and identify its domain and range.

1. $f(x)=\sqrt{x-4}$

Domain: \qquad
Range: \qquad
2. $f(x)=2 \sqrt{x}+1$

Domain: \qquad
Range: \qquad

Using the graph of $f(x)=\sqrt{x}$ as a guide, describe the transformation.
3. $g(x)=4 \sqrt{x+8}$ \qquad
4. $g(x)=-\sqrt{3 x}+2$

Use the description to write the square root function \mathbf{g}.

5. The parent function $f(x)=\sqrt{x}$ is reflected across the y-axis, vertically stretched by a factor of 7 , and translated 3 units down.
6. The parent function $f(x)=\sqrt{x}$ is translated 2 units right, compressed horizontally by a factor of $\frac{1}{2}$, and reflected across the x-axis.

Solve.

7. The radius, r, of a cylinder can be found using the function $r=\sqrt{\frac{V}{\pi h}}$, where
V is the volume and h is the height of the cylinder.
a. Find the radius of a cylinder with a volume of 200 cubic inches and a height of 4 inches. Use $\pi=3.14$. Round to the nearest hundredth.
b. The volume of a cylinder is doubled without changing its height. How did its radius change? Explain your reasoning.

Practice and Problem Solving: Modified

1. $f(0)=0 ; f(3)=1.5 ; f(6)=6$
2. $f^{-1}(x)=\sqrt{6 x}$
3. $f^{-1}(0)=0, f^{-1}(1.5)=3$, and $f^{-1}(6)=6$.
4.

5. $f(-1)=2 ; f(0)=3 ; f(1)=4$
6. $f^{-1}(x)=\sqrt[3]{x-3}$
7. $f^{-1}(2)=-1, f^{-1}(3)=0$, and $f^{-1}(4)=1$
8.

9. $s=\sqrt{A}$
10. $s=\sqrt{121}=11$ units

Reading Strategies

1. a. $g(x)$
b. $\{x \mid x \geq 0\}$
2. $f(x)$
3. a. $f^{-1}(x)=\sqrt[3]{x+5}$
b. $g^{-1}(x)=\sqrt{\frac{x}{12}}$ or $\frac{1}{6} \sqrt{3 x}$

Success for English Learners

1. No; Possible explanation: A cube root function is defined for all real number values of x.
2. Possible answer: I could find the inverse of the inverse, since the inverse of the inverse of a function is the original function.

LESSON 10-2

Practice and Problem Solving: A/B

1. $\{x \mid x \geq-4\} ;\{y \mid y \geq 0\}$

2. $\{x \mid x \geq 0\} ;\{y \mid y \geq 1\}$

3. Vertical stretch by a factor of 4 and horizontal translation 8 units left
4. Reflection across the x-axis, horizontal compression by a factor of $\frac{1}{3}$, and vertical translation 2 units up
5. $g(x)=7 \sqrt{-x}-3$
6. $g(x)=-\sqrt{2(x-2)}$
7. a. $r=\sqrt{\frac{50}{\pi}} \approx 3.99$ inches
b. If volume goes from V to $2 V$, radius must go from $r=\sqrt{\frac{V}{\pi h}}$ to
$r_{\text {new }}=\sqrt{\frac{2 V}{\pi h}}=\sqrt{2} \sqrt{\frac{V}{\pi h}}=\sqrt{2} r$. So, the radius must be multiplied by $\sqrt{2}$.
